The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy...The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy of the MODE algorithm still appears as an open problem.In this paper,a dynamic multi-objective differential evolution algorithm,based on the information of evolution progress(DMODE-IEP),is developed to improve the optimization performance.The main contributions of DMODE-IEP are as follows.First,the information of evolution progress,using the fitness values,is proposed to describe the evolution progress of MODE.Second,the dynamic adjustment mechanisms of evolution parameter values,mutation strategies and selection parameter value based on the information of evolution progress,are designed to balance the global exploration ability and the local exploitation ability.Third,the convergence of DMODE-IEP is proved using the probability theory.Finally,the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms,including the quality of the solutions,and the optimization speed of the algorithm.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ...Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a...Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem wi...A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.展开更多
Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been w...Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.展开更多
This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential...This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential evolution (FSDE). This combination incorporates FSDE into the optimization process of GSA with an attempt to avoid the premature convergence in GSA. This strategy makes full use of the exploration ability of GSA and the exploitation ability of FSDE. IGSA is tested on a suite of benchmark functions. The experimental results demonstrate the good performance of IGSA.展开更多
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam...A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade.展开更多
Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and re...Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.展开更多
In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can a...In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show the accuracy of the proposed method compared with some existing methods.展开更多
Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differentia...Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differential evolution algorithm?based on ensemble of constraint handling techniques and multi-population?framework, called ECMPDE. First, handling three improved variants of differential evolution algorithms are dynamically matched with two constraint handling techniques through the constraint allocation mechanism. Each combination includes three variants with corresponding constraint handling technique?and these combinations are in the set. Second, the population is divided into three smaller subpopulations and one larger reward subpopulation. Then a combination with three constraint algorithms is randomly selected from the set, and the three constraint algorithms are run in three sub-populations respectively. According to the improvement of fitness value, the optimal constraint?algorithm is selected to run on the reward sub-population, which can share?information and close cooperation among populations. In order to verify the effectiveness of the proposed algorithm, 12 standard constraint optimization problems?and 10 engineering constraint optimization problems are tested. The experimental results show that ECMPDE is an effective algorithm for solving constraint optimization problems.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is r...The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is robust, requires few control variables, is easy to use andlends itself very well to parallel computation. Calculation results indicate that the DE algorithmsimulates faults of a missile power system very well.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61903010 and 61890930-5)Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201910005020)Beijing Natural Science Foundation(Grant No.KZ202110005009).
文摘The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy of the MODE algorithm still appears as an open problem.In this paper,a dynamic multi-objective differential evolution algorithm,based on the information of evolution progress(DMODE-IEP),is developed to improve the optimization performance.The main contributions of DMODE-IEP are as follows.First,the information of evolution progress,using the fitness values,is proposed to describe the evolution progress of MODE.Second,the dynamic adjustment mechanisms of evolution parameter values,mutation strategies and selection parameter value based on the information of evolution progress,are designed to balance the global exploration ability and the local exploitation ability.Third,the convergence of DMODE-IEP is proved using the probability theory.Finally,the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms,including the quality of the solutions,and the optimization speed of the algorithm.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
文摘Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金supported in part by the National Key Research and Development Program of China(2018AAA0100100)the National Natural Science Foundation of China(61906001,62136008,U21A20512)+1 种基金the Key Program of Natural Science Project of Educational Commission of Anhui Province(KJ2020A0036)Alexander von Humboldt Professorship for Artificial Intelligence Funded by the Federal Ministry of Education and Research,Germany。
文摘Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金provided by grants from the National Basic Research Program of China (Grant No. 2006CB400503)LASG Free Exploration Fund+1 种基金LASG State Key Laboratory Special Fundthe KZCX3-SW-230 of the Chinese Academy of Sciences
文摘A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202)+2 种基金the National Science Fund for Outstanding Young Scholars(61222303)the National Natural Science Foundation of China(61174118,21206037)Shanghai Leading Academic Discipline Project(B504)
文摘Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.
基金supported by the National Natural Science Foundation of China (70871081)the Shanghai Leading Academic Discipline Project of China (S1205YLXK)
文摘This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential evolution (FSDE). This combination incorporates FSDE into the optimization process of GSA with an attempt to avoid the premature convergence in GSA. This strategy makes full use of the exploration ability of GSA and the exploitation ability of FSDE. IGSA is tested on a suite of benchmark functions. The experimental results demonstrate the good performance of IGSA.
基金funded jointly by the National Basic Research Program of China(″973″Program)(No2014CB046200)the National Natural Science Foundation of China(No.51506089)+1 种基金the Jiangsu Provincial Natural Science Foundation(No.BK20140059)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade.
文摘Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.
文摘In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show the accuracy of the proposed method compared with some existing methods.
文摘Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differential evolution algorithm?based on ensemble of constraint handling techniques and multi-population?framework, called ECMPDE. First, handling three improved variants of differential evolution algorithms are dynamically matched with two constraint handling techniques through the constraint allocation mechanism. Each combination includes three variants with corresponding constraint handling technique?and these combinations are in the set. Second, the population is divided into three smaller subpopulations and one larger reward subpopulation. Then a combination with three constraint algorithms is randomly selected from the set, and the three constraint algorithms are run in three sub-populations respectively. According to the improvement of fitness value, the optimal constraint?algorithm is selected to run on the reward sub-population, which can share?information and close cooperation among populations. In order to verify the effectiveness of the proposed algorithm, 12 standard constraint optimization problems?and 10 engineering constraint optimization problems are tested. The experimental results show that ECMPDE is an effective algorithm for solving constraint optimization problems.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
文摘The differential evolution (DE) algorithm is applied to solving themodels''equations of a whole missile power system, and the steady fault characteristics of the wholesystem are analyzed. The DE algorithm is robust, requires few control variables, is easy to use andlends itself very well to parallel computation. Calculation results indicate that the DE algorithmsimulates faults of a missile power system very well.