期刊文献+
共找到1,410篇文章
< 1 2 71 >
每页显示 20 50 100
An alert-situation text data augmentation method based on MLM
1
作者 DING Weijie MAO Tingyun +3 位作者 CHEN Lili ZHOU Mingwei YUAN Ying HU Wentao 《High Technology Letters》 EI CAS 2024年第4期389-396,共8页
The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,i... The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,it is usually difficult to obtain a large amount of training data.This paper proposes a text data augmentation method based on masked language model(MLM),aiming to enhance the generalization capability of deep learning models by expanding the training data.The method em-ploys a Mask strategy to randomly conceal words in the text,effectively leveraging contextual infor-mation to predict and replace masked words based on MLM,thereby generating new training data.Three Mask strategies of character level,word level and N-gram are designed,and the performance of each Mask strategy under different Mask ratios is analyzed and studied.The experimental results show that the performance of the word-level Mask strategy is better than the traditional data augmen-tation method. 展开更多
关键词 deep learning text data augmentation masked language model(MLM) alert-sit-uation text classification
下载PDF
Quantitative Comparative Study of the Performance of Lossless Compression Methods Based on a Text Data Model
2
作者 Namogo Silué Sié Ouattara +1 位作者 Mouhamadou Dosso Alain Clément 《Open Journal of Applied Sciences》 2024年第7期1944-1962,共19页
Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their perform... Data compression plays a key role in optimizing the use of memory storage space and also reducing latency in data transmission. In this paper, we are interested in lossless compression techniques because their performance is exploited with lossy compression techniques for images and videos generally using a mixed approach. To achieve our intended objective, which is to study the performance of lossless compression methods, we first carried out a literature review, a summary of which enabled us to select the most relevant, namely the following: arithmetic coding, LZW, Tunstall’s algorithm, RLE, BWT, Huffman coding and Shannon-Fano. Secondly, we designed a purposive text dataset with a repeating pattern in order to test the behavior and effectiveness of the selected compression techniques. Thirdly, we designed the compression algorithms and developed the programs (scripts) in Matlab in order to test their performance. Finally, following the tests conducted on relevant data that we constructed according to a deliberate model, the results show that these methods presented in order of performance are very satisfactory:- LZW- Arithmetic coding- Tunstall algorithm- BWT + RLELikewise, it appears that on the one hand, the performance of certain techniques relative to others is strongly linked to the sequencing and/or recurrence of symbols that make up the message, and on the other hand, to the cumulative time of encoding and decoding. 展开更多
关键词 Arithmetic Coding BWT Compression Ratio Comparative Study Compression Techniques Shannon-Fano HUFFMAN Lossless Compression LZW PERFORMANCE REDUNDANCY RLE text data Tunstall
下载PDF
Automatic User Goals Identification Based on Anchor Text and Click-Through Data 被引量:5
3
作者 YUAN Xiaojie DOU Zhicheng ZHANG Lu LIU Fang 《Wuhan University Journal of Natural Sciences》 CAS 2008年第4期495-500,共6页
Understanding the underlying goal behind a user's Web query has been proved to be helpful to improve the quality of search. This paper focuses on the problem of automatic identification of query types according to th... Understanding the underlying goal behind a user's Web query has been proved to be helpful to improve the quality of search. This paper focuses on the problem of automatic identification of query types according to the goals. Four novel entropy-based features extracted from anchor data and click-through data are proposed, and a support vector machines (SVM) classifier is used to identify the user's goal based on these features. Experi- mental results show that the proposed entropy-based features are more effective than those reported in previous work. By combin- ing multiple features the goals for more than 97% of the queries studied can be correctly identified. Besides these, this paper reaches the following important conclusions: First, anchor-based features are more effective than click-through-based features; Second, the number of sites is more reliable than the number of links; Third, click-distribution- based features are more effective than session-based ones. 展开更多
关键词 query classification user goals anchor text click-through data information retrieval
下载PDF
Effective short text classification via the fusion of hybrid features for IoT social data 被引量:3
4
作者 Xiong Luo Zhijian Yu +2 位作者 Zhigang Zhao Wenbing Zhao Jenq-Haur Wang 《Digital Communications and Networks》 SCIE CSCD 2022年第6期942-954,共13页
Nowadays short texts can be widely found in various social data in relation to the 5G-enabled Internet of Things (IoT). Short text classification is a challenging task due to its sparsity and the lack of context. Prev... Nowadays short texts can be widely found in various social data in relation to the 5G-enabled Internet of Things (IoT). Short text classification is a challenging task due to its sparsity and the lack of context. Previous studies mainly tackle these problems by enhancing the semantic information or the statistical information individually. However, the improvement achieved by a single type of information is limited, while fusing various information may help to improve the classification accuracy more effectively. To fuse various information for short text classification, this article proposes a feature fusion method that integrates the statistical feature and the comprehensive semantic feature together by using the weighting mechanism and deep learning models. In the proposed method, we apply Bidirectional Encoder Representations from Transformers (BERT) to generate word vectors on the sentence level automatically, and then obtain the statistical feature, the local semantic feature and the overall semantic feature using Term Frequency-Inverse Document Frequency (TF-IDF) weighting approach, Convolutional Neural Network (CNN) and Bidirectional Gate Recurrent Unit (BiGRU). Then, the fusion feature is accordingly obtained for classification. Experiments are conducted on five popular short text classification datasets and a 5G-enabled IoT social dataset and the results show that our proposed method effectively improves the classification performance. 展开更多
关键词 Information fusion Short text classi fication BERT Bidirectional encoder representations fr 0om transformers Deep learning Social data
下载PDF
Identifying Scientific Project-generated Data Citation from Full-text Articles: An Investigation of TCGA Data Citation 被引量:4
5
作者 Jiao Li Si Zheng +2 位作者 Hongyu Kang Zhen Hou Qing Qian 《Journal of Data and Information Science》 2016年第2期32-44,共13页
Purpose: In the open science era, it is typical to share project-generated scientific data by depositing it in an open and accessible database. Moreover, scientific publications are preserved in a digital library arc... Purpose: In the open science era, it is typical to share project-generated scientific data by depositing it in an open and accessible database. Moreover, scientific publications are preserved in a digital library archive. It is challenging to identify the data usage that is mentioned in literature and associate it with its source. Here, we investigated the data usage of a government-funded cancer genomics project, The Cancer Genome Atlas(TCGA), via a full-text literature analysis.Design/methodology/approach: We focused on identifying articles using the TCGA dataset and constructing linkages between the articles and the specific TCGA dataset. First, we collected 5,372 TCGA-related articles from Pub Med Central(PMC). Second, we constructed a benchmark set with 25 full-text articles that truly used the TCGA data in their studies, and we summarized the key features of the benchmark set. Third, the key features were applied to the remaining PMC full-text articles that were collected from PMC.Findings: The amount of publications that use TCGA data has increased significantly since 2011, although the TCGA project was launched in 2005. Additionally, we found that the critical areas of focus in the studies that use the TCGA data were glioblastoma multiforme, lung cancer, and breast cancer; meanwhile, data from the RNA-sequencing(RNA-seq) platform is the most preferable for use.Research limitations: The current workflow to identify articles that truly used TCGA data is labor-intensive. An automatic method is expected to improve the performance.Practical implications: This study will help cancer genomics researchers determine the latest advancements in cancer molecular therapy, and it will promote data sharing and data-intensive scientific discovery.Originality/value: Few studies have been conducted to investigate data usage by governmentfunded projects/programs since their launch. In this preliminary study, we extracted articles that use TCGA data from PMC, and we created a link between the full-text articles and the source data. 展开更多
关键词 Scientific data Full-text literature Open access PubMed Central data citation
下载PDF
A Complexity Analysis and Entropy for Different Data Compression Algorithms on Text Files
6
作者 Mohammad Hjouj Btoush Ziad E. Dawahdeh 《Journal of Computer and Communications》 2018年第1期301-315,共15页
In this paper, we analyze the complexity and entropy of different methods of data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC). We test those algorith... In this paper, we analyze the complexity and entropy of different methods of data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC). We test those algorithms on different files of different sizes and then conclude that: LZW is the best one in all compression scales that we tested especially on the large files, then Huffman, HFLC, and FLC, respectively. Data compression still is an important topic for research these days, and has many applications and uses needed. Therefore, we suggest continuing searching in this field and trying to combine two techniques in order to reach a best one, or use another source mapping (Hamming) like embedding a linear array into a Hypercube with other good techniques like Huffman and trying to reach good results. 展开更多
关键词 text FILES data Compression HUFFMAN Coding LZW Hamming ENTROPY COMPLEXITY
下载PDF
Text Mining Based on the Korean Word Segmentation System in the Context of Big Data
7
作者 Yongmin Quan Na Niu +1 位作者 Hongyi Li Zhezhi Jin 《信息工程期刊(中英文版)》 2018年第1期1-7,共7页
Text mining is a text data analysis,found that the relationship between concepts and underlying concepts from unstructured text,it is extracted from large text database has not yet been realized patterns or associatio... Text mining is a text data analysis,found that the relationship between concepts and underlying concepts from unstructured text,it is extracted from large text database has not yet been realized patterns or associations,some information retrieval and text processing system can find the relationship between words and paragraphs.This article first describes the data sources and a brief introduction to the related platforms and functional components.Secondly,it explains the Chinese word segmentation and the Korean word segmentation system.At last,it takes the news,documents and materials of the Korean Peninsula as well as the various public opinion data on the network as the basic data for the research.The examples of word frequency graph and word cloud graph is carried out to show the results of text mining through Chinese word segmentation system and Korean word segmentation system. 展开更多
关键词 BIG data Platform Chinese WORD SEGMENTATION SYSTEM KOREAN WORD SEGMENTATION SYSTEM text Mining
下载PDF
A feature representation method for biomedical scientific data based on composite text description
8
作者 SUN Wei 《Chinese Journal of Library and Information Science》 2009年第4期43-53,共11页
Feature representation is one of the key issues in data clustering. The existing feature representation of scientific data is not sufficient, which to some extent affects the result of scientific data clustering. Ther... Feature representation is one of the key issues in data clustering. The existing feature representation of scientific data is not sufficient, which to some extent affects the result of scientific data clustering. Therefore, the paper proposes a concept of composite text description(CTD) and a CTD-based feature representation method for biomedical scientific data. The method mainly uses different feature weight algorisms to represent candidate features based on two types of data sources respectively, combines and finally strengthens the two feature sets. Experiments show that comparing with traditional methods, the feature representation method is more effective than traditional methods and can significantly improve the performance of biomedcial data clustering. 展开更多
关键词 Composite text description Scientific data Feature representation Weight algorism
下载PDF
An Unsupervised Method for Short-Text Sentiment Analysis Based on Analysis of Massive Data
9
作者 Zhenhua Huang Zhenrong Zhao +1 位作者 Qiong Liu Zhenyu Wang 《国际计算机前沿大会会议论文集》 2015年第1期49-50,共2页
Common forms of short text are microblogs, Twitter posts, short product reviews, short movie reviews and instant messages. Sentiment analysis of them has been a hot topic. A highly-accurate model is proposed in this p... Common forms of short text are microblogs, Twitter posts, short product reviews, short movie reviews and instant messages. Sentiment analysis of them has been a hot topic. A highly-accurate model is proposed in this paper for short-text sentiment analysis. The researches target microblog, product review and movie reviews. Words, symbols or sentences with emotional tendencies are proved important indicators in short-text sentiment analysis based on massive users’ data. It is an effective method to predict emotional tendencies of short text using these features. The model has noticed the phenomenon of polysemy in single-character emotional word in Chinese and discusses singlecharacter and multi-character emotional word separately. The idea of model can be used to deal with various kinds of short-text data. Experiments show that this model performs well in most cases. 展开更多
关键词 SENTIMENT ANALYSIS SHORT text EMOTIONAL WORDS MASSIVE data
下载PDF
Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT
10
作者 刘煜锴 高丽 +3 位作者 刘海庆 杨曜 高翔 J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第12期1143-1147,共5页
A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversio... A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversion method, evolution of the density profile analyzed by this method can quickly offer important information. This method has the advantage of fast calculation speed with the order of ten milliseconds per normal shot and it is capable of processing up to 1 MHz sampled data, which is helpful for studying density sawtooth instability and the disruption between shots. In the duration of a flat-top plasma current of usual ohmic discharges on J-TEXT, shape factor u is ranged from 4 to 5. When the disruption of discharge happens, the density profile becomes peaked and the shape factor u typically decreases to 1. 展开更多
关键词 fast data processing polarimeter-interferometer J-text
下载PDF
基于TextCNN模型的电子期刊文献推荐方法研究
11
作者 刁羽 薛红 《新世纪图书馆》 CSSCI 2024年第7期64-71,共8页
论文提出基于TextCNN模型的电子期刊文献推荐方法,旨在更好地精确把握文献内容的本质特征与用户文献需求的深层关系,实现电子期刊文献推荐服务的个性化和精准化。使用word2vec对文献题录信息进行向量化,使用TextCNN模型训练文献推荐模型... 论文提出基于TextCNN模型的电子期刊文献推荐方法,旨在更好地精确把握文献内容的本质特征与用户文献需求的深层关系,实现电子期刊文献推荐服务的个性化和精准化。使用word2vec对文献题录信息进行向量化,使用TextCNN模型训练文献推荐模型,最后主动将符合用户需求的文献推送给科研用户。实践证明,论文设计的推荐模型能够为用户推荐电子期刊文献,效果良好。 展开更多
关键词 textCNN 文本分类 电子期刊文献推荐 行为数据
下载PDF
Research and Enlightenment of Text Mining Applications in ADR from Social Media
12
作者 Lin Xueyi Pang Li +1 位作者 Huang Zhe Lian Guiyu 《Asian Journal of Social Pharmacy》 2024年第1期9-19,共11页
Objective To discuss how to use social media data for post-marketing drug safety monitoring in China as soon as possible by systematically combing the text mining applications,and to provide new ideas and methods for ... Objective To discuss how to use social media data for post-marketing drug safety monitoring in China as soon as possible by systematically combing the text mining applications,and to provide new ideas and methods for pharmacovigilance.Methods Relevant domestic and foreign literature was used to explore text classification based on machine learning,text mining based on deep learning(neural networks)and adverse drug reaction(ADR)terminology.Results and Conclusion Text classification based on traditional machine learning mainly include support vector machine(SVM)algorithm,naive Bayesian(NB)classifier,decision tree,hidden Markov model(HMM)and bidirectional en-coder representations from transformers(BERT).The main neural network text mining based on deep learning are convolution neural network(CNN),recurrent neural network(RNN)and long short-term memory(LSTM).ADR terminology standardization tools mainly include“Medical Dictionary for Regulatory Activities”(MedDRA),“WHODrug”and“Systematized Nomenclature of Medicine-Clinical Terms”(SNOMED CT). 展开更多
关键词 social media data text mining adverse drug reaction
下载PDF
基于PaddleOCR与Style-Text的金融票据手写体文本识别
13
作者 张辉煌 王鸿硕 《科技创新与应用》 2024年第30期68-71,共4页
该文提出一种基于PaddleOCR框架的金融票据手写体文本识别方法,通过引入基于生成对抗网络(GAN)的数据合成工具Style-Text,增强模型对不同背景文本的识别能力。在真实的金融票据数据集上进行的实验表明,该方法在处理复杂文本和低质量图... 该文提出一种基于PaddleOCR框架的金融票据手写体文本识别方法,通过引入基于生成对抗网络(GAN)的数据合成工具Style-Text,增强模型对不同背景文本的识别能力。在真实的金融票据数据集上进行的实验表明,该方法在处理复杂文本和低质量图像方面表现出显著的优势,证明其在金融票据手写体文本识别中的有效性和实用性。 展开更多
关键词 金融票据识别 PaddleOCR 数据合成 手写体 文本识别
下载PDF
EOS Data Dumper——EOS免费数据自动下载与重发布系统 被引量:5
14
作者 南卓铜 王亮绪 李新 《冰川冻土》 CSCD 北大核心 2007年第3期463-469,共7页
为了更有效的利用已有数据资源,不造成科研设施的重复投资,数据共享越来越受到重视.NASA对地观测系统(EOS)提供了大量的包括MODIS在内的免费数据资源,为此,EOS Data Dumper(EDD)通过程序模拟EOS数据门户的正常下载流程,采用了先进的Web... 为了更有效的利用已有数据资源,不造成科研设施的重复投资,数据共享越来越受到重视.NASA对地观测系统(EOS)提供了大量的包括MODIS在内的免费数据资源,为此,EOS Data Dumper(EDD)通过程序模拟EOS数据门户的正常下载流程,采用了先进的Web页面文本信息捕捉技术,实现定时自动下载研究区的全部EOS免费数据,并通过免费的DIAL系统,向互联网重新发布,实现复杂的基于时空的数据查询.从技术角度详细介绍了EDD的项目背景与意义、实现方案。 展开更多
关键词 EOS数据 遥感影像数据 文本信息捕捉 数据共享
下载PDF
中文科技政策文本分类:增强的TextCNN视角 被引量:5
15
作者 李牧南 王良 赖华鹏 《科技管理研究》 CSSCI 北大核心 2023年第2期160-166,共7页
近年尽管针对中文本文分类的研究成果不少,但基于深度学习对中文政策等长文本进行自动分类的研究还不多见。为此,借鉴和拓展传统的数据增强方法,提出集成新时代人民日报分词语料库(NEPD)、简单数据增强(EDA)算法、word2vec和文本卷积神... 近年尽管针对中文本文分类的研究成果不少,但基于深度学习对中文政策等长文本进行自动分类的研究还不多见。为此,借鉴和拓展传统的数据增强方法,提出集成新时代人民日报分词语料库(NEPD)、简单数据增强(EDA)算法、word2vec和文本卷积神经网络(TextCNN)的NEWT新型计算框架;实证部分,基于中国地方政府发布的科技政策文本进行算法校验。实验结果显示,在取词长度分别为500、750和1000词的情况下,应用NEWT算法对中文科技政策文本进行分类的效果优于RCNN、Bi-LSTM和CapsNet等传统深度学习模型,F1值的平均提升比例超过13%;同时,NEWT在较短取词长度下能够实现全文输入的近似效果,可以部分改善传统深度学习模型在中文长文本自动分类任务中的计算效率。 展开更多
关键词 NEWT 深度学习 数据增强 卷积神经网络 政策文本分类 中文长文本
下载PDF
浅谈如何使用SQL中的image和text数据 被引量:1
16
作者 陈晓男 《电脑知识与技术》 2006年第5期123-124,共2页
SQL中的image和text类型的数据带给用户很多便利。但具体使用时常常会遇到许多问题,那幺该如何解决呢,我们可以用两个命令提示待下的命令bcp和textcopy来解决。
关键词 SQL 数据 IMAGE text命令 bcp textcopy
下载PDF
一种基于日志信息和CNN-text的软件系统异常检测方法 被引量:36
17
作者 梅御东 陈旭 +4 位作者 孙毓忠 牛逸翔 肖立 王海荣 冯百明 《计算机学报》 EI CSCD 北大核心 2020年第2期366-380,共15页
当前,数据挖掘作为一种高时效性、高真实性的分析方法,正在社会中扮演着越发重要的角色,其在大型数据中快速挖掘模式,发现规律的能力正逐步取代人工的作用.而在当前各个计算机领域大行其道的大型分布式系统(如Hadoop、Spark等)的日志中... 当前,数据挖掘作为一种高时效性、高真实性的分析方法,正在社会中扮演着越发重要的角色,其在大型数据中快速挖掘模式,发现规律的能力正逐步取代人工的作用.而在当前各个计算机领域大行其道的大型分布式系统(如Hadoop、Spark等)的日志中,每天都产生着数以百万计的系统日志,这些日志的数据量之庞杂、关系之混乱,已大大影响了程序员对系统的人工监控效率,同时也提高了新程序员的培养成本.为解决以上问题,数据挖掘及系统分析两个领域相结合是一种必然的趋势,也因此,机器学习模型也越来越多地被业界提及用于做系统日志分析.然而大多数情况下,系统日志中,报告系统运行状态为“严重”的日志占少数,而这些少数信息才是程序员最需要关注的,然而大多数用于系统日志分析的机器学习模型都假设训练集的数据是均衡数据,因此这些模型在做系统日志预警时容易过度偏向大样本数据,以至于效果不够理想.本文将从深度学习角度出发,探究深度学习中的CNN-text(CT)在系统日志分析方面的应用能力,通过将CT与主流的系统日志分析机器学习模型SVM、决策树对比,探究CT相对于这些算法的优越性;将CT与CNN-RNN-text(CRT)进行对比,分析CT对特征的处理方式,证实CT在深度学习模型中处理系统日志类文本的优越性;最后将所有模型应用至两套不同的日志类文本数据中进行对比,证明CT的普适性.在CT同日志分析的主流机器学习模型对比的实验中,CT相较于最优模型的结果召回率提升了近15%;在CT同CRT模型对比的实验中,CT相较于更为先进的CRT,模型准确率高出约20%,召回率高出约80%、查准率高出约60%;在CT的普适性实验中,将各类模型融入到本文的实验数据集logstash和公开数据集WC85_1中,在准确率同其他表现较优的模型同为100%的情况下,CT的召回率高出其余召回率最高的模型(DT-Bi)近14%.从中可看出,相较于主流系统日志分析机器学习模型,如支持向量机、决策树、朴素贝叶斯等,CNN-text的局部特征提取能力及非线性拟合能力都有更为优异的表现;同时相较于同为深度学习CNN簇的CNN-RNN-text将大量权重投入到系统日志的序列特征中的特点,CNN-text则报以较少的关注,反而在序列不规则的系统日志中展现出比CNN-RNN-text更优秀的表现.最终证明了CNN-text是本文所提到的方法中最适合进行软件系统异常检测的方法. 展开更多
关键词 系统日志分析 系统异常预警 不均衡数据 机器学习 深度学习 CNN-text
下载PDF
A New Feature Selection Method for Text Clustering 被引量:3
18
作者 XU Junling XU Baowen +2 位作者 ZHANG Weifeng CUI Zifeng ZHANG Wei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期912-916,共5页
Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method... Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method. 展开更多
关键词 feature selection text clustering unsupervised learning data preprocessing
下载PDF
J-TEXT托卡马克数据采集系统设计 被引量:2
19
作者 黄礼华 庄革 +1 位作者 张明 杨州军 《微计算机信息》 2009年第16期74-76,共3页
为了满足J-TEXT装置实验数据采集、存储、访问和处理的需要,本文设计开发了J-TEXT装置数据采集及服务系统。该系统采用C/S(客户机/服务器)模式构建,包括数据采集、数据存储和数据服务三部分,它们之间通过高速以太网进行通信连接。本文... 为了满足J-TEXT装置实验数据采集、存储、访问和处理的需要,本文设计开发了J-TEXT装置数据采集及服务系统。该系统采用C/S(客户机/服务器)模式构建,包括数据采集、数据存储和数据服务三部分,它们之间通过高速以太网进行通信连接。本文详细介绍了系统的网络结构、数据采集流程和相关的数据服务。在J-TEXT装置的放电实验中,数据采集及服务系统性能稳定,运行可靠,访问方式灵活,满足了J-TEXT装置的需要。 展开更多
关键词 J-text 数据采集 MDSPLUS
下载PDF
J-TEXT托卡马克的数据采集和数据服务系统 被引量:1
20
作者 冯泽龙 庄革 +3 位作者 瞿连政 丁永华 张明 黄礼华 《船电技术》 2007年第2期65-68,共4页
J-TEXT托卡马克是用来研究热核聚变的实验装置。数据系统是其重要组成部分,由数据采集和数据服务组成。数据采集部分选用PCI总线采集卡,采集程序用LabVIEW编写,运行在Windows操作系统之下。数据服务采用MDSplus软件包,选用Redhat Linux ... J-TEXT托卡马克是用来研究热核聚变的实验装置。数据系统是其重要组成部分,由数据采集和数据服务组成。数据采集部分选用PCI总线采集卡,采集程序用LabVIEW编写,运行在Windows操作系统之下。数据服务采用MDSplus软件包,选用Redhat Linux Enterprise为操作系统。本文阐述了该系统的数据流程与实现过程。 展开更多
关键词 MDSPLUS LABVIEW J-text数据采集数据服务
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部