The pump performance parameters,such as pump pressure,plunger friction and pump valve resistance,are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS).In this paper,consi...The pump performance parameters,such as pump pressure,plunger friction and pump valve resistance,are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS).In this paper,considering the characteristic of geometrical nonlinear and rheology property of multiphase fluid,the pump performance parameters are studied.Firstly,a dynamics model of annular fluid flow is built.In the detail,a partial differential equation of annular fluid is established and a computing model of fluid pressure gradient is built.Secondly,the simulation models of plunger friction and hydraulic resistance of pump valve are built.Finally,a novel simulation method of fluid pressure in annular space is proposed with software ANSYS.In order to check up the correction of models proposed in this paper,the comparison curves of experiment and simulation results are given.Based on above model,the whole simulation model of plunger pump is simulated with Visual Basic 6.0.The results show that the fluid friction of pump plunger and instantaneous resistance of pump valve are nonlinear.The impact factors of pump performance parameters are analyzed,and their characteristic curves are given,which can help to optimize the pump motion parameters and pump structural.展开更多
Ductile iron bars(DIBs) with a diameter of 145 mm, used for plunger pump production, were made by the horizontal continuous casting(HCC). The microstructure of the samples cut at three locations with different distanc...Ductile iron bars(DIBs) with a diameter of 145 mm, used for plunger pump production, were made by the horizontal continuous casting(HCC). The microstructure of the samples cut at three locations with different distances away from the surface(~20 mm from the surface, half of the radius and the center of the HCCDIBs)were investigated. The mechanical properties were measured by tensile and torsion tests. Results show that after the spheroidization of graphite, the iron matrix incorporates the nodules of Format I, Size 8 close to the surface, Format I, Size 7 at the half of the radius from the surface, and Format II, Size 6 in the centre of the bar,according to the ASTM A247 standard. The content of pearlite in the matrix changes from 55%(~20 mm from the surface) to 70%(half of the radius) and 80%(the center of the HCCDIBs). The strengths in tension are 552, 607 and 486 MPa with the elongations of 12.5%, 10.5% and 5.8% in samples cut at these three locations from the surface to the centre, respectively. The strength in torsion is equal to 558, 551 and 471 MPa at corresponding torsion angles of 418°, 384° and 144° respectively to the same distance from the bar surface. Fracture in tension is manifested via crack propagation through the interface between graphite nodules and matrix(Mode I), while in torsion the fracture is caused by the shear of graphite nodules(Mode II). It is shown that the transition between two fracture modes is also dependent on the size of graphite nodule. Typically, fracture Mode I was observed for nodules of smaller diameter(less than 22.7 μm) and fracture Mode II was seen for nodules of greater diameter(more than 24.8 μm).展开更多
基金Projects(ZR2017LEE002,ZR2016HB59)supported by the Natural Science Foundation of Shandong Province,ChinaProject(LYDX2016BS032)supported by the Scientific Research Starting Foundation of Linyi University,China+1 种基金Project(2017YF012)supported by Shandong Agricultural Machinery Equipment Research and Development Innovation,ChinaProjects(201801219003,201802026003)supported by Collaborative Education Project of Industry-Education Cooperation of National Education Ministry,China
文摘The pump performance parameters,such as pump pressure,plunger friction and pump valve resistance,are fundamental parameters of optimal design of pump efficiency and sucker rod pumping system (SRPS).In this paper,considering the characteristic of geometrical nonlinear and rheology property of multiphase fluid,the pump performance parameters are studied.Firstly,a dynamics model of annular fluid flow is built.In the detail,a partial differential equation of annular fluid is established and a computing model of fluid pressure gradient is built.Secondly,the simulation models of plunger friction and hydraulic resistance of pump valve are built.Finally,a novel simulation method of fluid pressure in annular space is proposed with software ANSYS.In order to check up the correction of models proposed in this paper,the comparison curves of experiment and simulation results are given.Based on above model,the whole simulation model of plunger pump is simulated with Visual Basic 6.0.The results show that the fluid friction of pump plunger and instantaneous resistance of pump valve are nonlinear.The impact factors of pump performance parameters are analyzed,and their characteristic curves are given,which can help to optimize the pump motion parameters and pump structural.
基金financially supported by the Shaanxi Provincial Science and Technology Achievement Transfer and Promotion Plan-absorb Achievement Transformation Project(No.2017CGZH-XNGJ-03)Shaanxi Provincial Education Department Scientific Research Program Project-service Local Special Industrialization Cultivation Project(No.17JF018)+1 种基金Xi'an Science and Technology Planning Project Science and Technology Innovation Guide Projects(No.201805037YD15CG21(19))Xi'an University of Technology Scientific and Technological Achievement Transformation Project-technical Requirement Solving Project of Enterprises(No.2018-1)
文摘Ductile iron bars(DIBs) with a diameter of 145 mm, used for plunger pump production, were made by the horizontal continuous casting(HCC). The microstructure of the samples cut at three locations with different distances away from the surface(~20 mm from the surface, half of the radius and the center of the HCCDIBs)were investigated. The mechanical properties were measured by tensile and torsion tests. Results show that after the spheroidization of graphite, the iron matrix incorporates the nodules of Format I, Size 8 close to the surface, Format I, Size 7 at the half of the radius from the surface, and Format II, Size 6 in the centre of the bar,according to the ASTM A247 standard. The content of pearlite in the matrix changes from 55%(~20 mm from the surface) to 70%(half of the radius) and 80%(the center of the HCCDIBs). The strengths in tension are 552, 607 and 486 MPa with the elongations of 12.5%, 10.5% and 5.8% in samples cut at these three locations from the surface to the centre, respectively. The strength in torsion is equal to 558, 551 and 471 MPa at corresponding torsion angles of 418°, 384° and 144° respectively to the same distance from the bar surface. Fracture in tension is manifested via crack propagation through the interface between graphite nodules and matrix(Mode I), while in torsion the fracture is caused by the shear of graphite nodules(Mode II). It is shown that the transition between two fracture modes is also dependent on the size of graphite nodule. Typically, fracture Mode I was observed for nodules of smaller diameter(less than 22.7 μm) and fracture Mode II was seen for nodules of greater diameter(more than 24.8 μm).