期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
GPU parallel computation of dendrite growth competition in forced convection using the multi-phase-field-lattice Boltzmann model
1
作者 高梓豪 朱昶胜 王苍龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期530-547,共18页
A graphics-processing-unit(GPU)-parallel-based computational scheme is developed to realize the competitive growth process of converging bi-crystal in two-dimensional states in the presence of forced convection condit... A graphics-processing-unit(GPU)-parallel-based computational scheme is developed to realize the competitive growth process of converging bi-crystal in two-dimensional states in the presence of forced convection conditions by coupling a multi-phase field model and a lattice Boltzmann model.The elimination mechanism in the evolution process is analyzed for the three conformational schemes constituting converging bi-crystals under pure diffusion and forced convection conditions,respectively,expanding the research of the competitive growth of columnar dendrites under melt convection conditions.The results show that the elimination mechanism for the competitive growth of converging bi-crystals of all three configurations under pure diffusion conditions follows the conventional Walton-Chalmers model.When there is forced convection with lateral flow in the liquid phase,the anomalous elimination phenomenon of unfavorable dendrites eliminating favorable dendrites occurs in the grain boundaries.In particular,the anomalous elimination phenomenon is relatively strong in conformation 1 and conformation 2 when the orientation angle of unfavorable dendrites is small,and relatively weak in conformation 3.Moreover,the presence of convection increases the tip growth rate of both favorable and unfavorable dendrites in the grain boundary.In addition,the parallelization of the multi-phase-field-lattice Boltzmann model is achieved by designing the parallel computation of the model on the GPU platform concerning the computerunified-device-architecture parallel technique,and the results show that the parallel computation of this model based on the GPU has absolute advantages,and the parallel acceleration is more obvious as the computation area increases. 展开更多
关键词 multi-phase field model GPU grain competition growth lattice Boltzmann model
下载PDF
Development and Application of Multi-phase Nitrides Bonded Silicon Carbide Lintel Blocks for Dry Quenching Furnaces
2
作者 CAO Huiyan FENG Yanbin +4 位作者 ZHANG Xinhua HUANG Zhigang LI Jie WANG Xinhui WU Jiguang 《China's Refractories》 CAS 2023年第2期7-11,共5页
Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)... Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China. 展开更多
关键词 inclined channel area dry quenching furnaces silicon carbide multi-phase nitrides lintel blocks
下载PDF
Numerical simulation of complex multi-phase fluid of casting process and its applications 被引量:5
3
作者 C. Beckermann 《China Foundry》 SCIE CAS 2006年第2期83-86,共4页
The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag moveme... The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase. 展开更多
关键词 CASTING multi-phasE FLOW NUMERICAL simulation
下载PDF
A proposed NMR solution for multi-phase flow fluid detection 被引量:5
4
作者 Jun-Feng Shi Feng Deng +7 位作者 Li-Zhi Xiao Hua-Bing Liu Feng-Qin Ma Meng-Ying Wang Rui-Dong Zhao Shi-Wen Chen Jian-Jun Zhang Chun-Ming Xiong 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1148-1158,共11页
In the petroleum industry,detection of multi-phase fluid flow is very important in both surface and down-hole measurements.Accurate measurement of high rate of water or gas multi-phase flow has always been an academic... In the petroleum industry,detection of multi-phase fluid flow is very important in both surface and down-hole measurements.Accurate measurement of high rate of water or gas multi-phase flow has always been an academic and industrial focus.NMR is an efficient and accurate technique for the detection of fluids;it is widely used in the determination of fluid compositions and properties.This paper is aimed to quantitatively detect multi-phase flow in oil and gas wells and pipelines and to propose an innovative method for online nuclear magnetic resonance(NMR)detection.The online NMR data acquisition,processing and interpretation methods are proposed to fill the blank of traditional methods.A full-bore straight tube design without pressure drop,a Halbach magnet structure design with zero magnetic leakage outside the probe,a separate antenna structure design without flowing effects on NMR measurement and automatic control technology will achieve unattended operation.Through the innovation of this work,the application of NMR for the real-time and quantitative detection of multi-phase flow in oil and gas wells and pipelines can be implemented. 展开更多
关键词 Oil and gas wells multi-phase flow NMR Online detection
下载PDF
A new analytical model for thermal stresses in multi-phase materials and lifetime prediction methods 被引量:3
5
作者 Ladislav Ceniga 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期189-206,共18页
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distribute... Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials. 展开更多
关键词 Thermal stress multi-phase material Lifetime prediction Analytical modelling
下载PDF
Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy 被引量:1
6
作者 冯力 贾北北 +3 位作者 朱昶胜 安国升 肖荣振 冯小静 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期87-95,共9页
This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the ... This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the solid-solid phase transformation model. Taking an Fe-C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase (generated in liquid-solid phase transformation) in the solid-solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries. 展开更多
关键词 multi-phase transformation MICROSTRUCTURE multi-phase-field method grain orientation
下载PDF
Mechanical properties of irradiated multi-phase polycrystalline BCC materials 被引量:4
7
作者 Dingkun Song Xiazi Xiao +2 位作者 Jianming Xue Haijian Chu Huiling Duan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期191-204,共14页
Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility,resulting from irradiation-induced defects such as vacancies,interstiti... Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility,resulting from irradiation-induced defects such as vacancies,interstitials and dislocation loops,etc.In this paper,we develop an elastic-viscoplastic model for irradiated multi-phase polycrystalline BCC materials in which the mechanical behaviors of individual grains and polycrystalline aggregates are both explored.At the microscopic grain scale,we use the internal variable model and propose a new tensorial damage descriptor to represent the geometry character of the defect loop,which facilitates the analysis of the defect loop evolutions and dislocation-defect interactions.At the macroscopic polycrystal scale,the self-consistent scheme is extended to consider the multiphase problem and used to bridge the individual grain behavior to polycrystal properties.Based on the proposed model,we found that the work-hardening coefficient decreases with the increase of irradiation-induced defect loops,and the orientation/loading dependence of mechanical properties is mainly attributed to the different Schmid factors.At the polycrystalline scale,numerical results for pure Fe match well with the irradiation experiment data.The model is further extended to predict the hardening effect of dispersoids in oxide-dispersed strengthened steels by the considering the Orowan bowing.The influences of grain size and irradiation are found to compete to dominate the strengthening behaviors of materials. 展开更多
关键词 Irradiation Self-consistent method multi-phase polycrystal Dislocation density
下载PDF
THE RATE-INDEPENDENT CONSTITUTIVE MODELING FOR POROUS AND MULTI-PHASE NANOCRYSTALLINE MATERIALS 被引量:1
8
作者 Zhou Jianqiu Li Yunnling Zhang Zhenzhong 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期13-20,共8页
To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated ... To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated as a mixture of grain interior and grain bound- ary, and pores were taken as a single phase, then Budiansky's self-consistent method was used to calculate the Young's modulus of porous, possible multi-phase, nanocrystalline materials, the prediction being in good agreement with the results in the literature. Further, the established method is extended to simulate the constitutive relations of porous and possible multi-phase nanocrystalline materials with small plastic deformation in conjunction with the secant-moduli approach and iso-strain assumption. Comparisons between the experimental grain size and porosity dependent mechanical data and the corresponding predictions using the established model show that it appears to be capable of describing the time-independent mechanical behaviors for porous and multi-phase nanocrystalline materials in a small plastic strain range. Further discussion on the modification factor, the advantages and limitations of the model developed were present. 展开更多
关键词 nanocrystalline materials constitutive modeling multi-phasE POROSITY plastic deformation
下载PDF
Multi-phase computer modeling and laboratory study of dust capture by an inertial Vortecone scrubber 被引量:1
9
作者 Ashish Ranjan Kumar Steven Schafrik Thomas Novak 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期287-291,共5页
Dust generated in mining and tunneling activities is hazardous to health of persons and safety of operations. These projects employ pick-milling machines to extract minerals and rock by mechanical breakage.The machine... Dust generated in mining and tunneling activities is hazardous to health of persons and safety of operations. These projects employ pick-milling machines to extract minerals and rock by mechanical breakage.The machines are equipped with flooded-bed scrubbers that encase dust particles within fine water films as particles encounter a flooded wire-mesh screen. A major disadvantage is that the screen gets clogged when particles become trapped within the wire mesh, reducing airflow through the scrubber and increasing ambient dust concentrations. Thus, the system requires frequent maintenance or replacement. The application of a Vortecone scrubber as an improved alternative to conventional fibrous type scrubbers is investigated. A Vortecone forces dust-laden air and water to follow a complex, rapidly swirling motion.The momentum drives dust particles towards the periphery where they are captured by the water film.The operating characteristics of a reduced-scale physical model of a Vortecone, with its primary axis mounted in the horizontal orientation, was analyzed numerically and experimentally. Computational fluid dynamics(CFD) models depicting the spraying action and multi-phase air/water flows using the volume of fraction(VOF) approach, are presented. Experimental results, utilizing an optical particle counting technique to establish the dust-cleaning capabilities of the model, are also described. 展开更多
关键词 Computational fluid dynamics(CFD) Process safety multi-phase flows Volume of fraction(VOF) Dust-capture Cleaning efficiency
下载PDF
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
10
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase Ceramic tool material Mechanical properties Cutting performance
下载PDF
Thermo-hydro-mechanical-air coupling finite element method and its application to multi-phase problems 被引量:3
11
作者 Feng Zhang Yonglin Xiong +1 位作者 Sheng Zhang Bin Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期77-98,共22页
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as... In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure. 展开更多
关键词 multi-phase Thermo-hyd ro-mechanical-air (THMA) Finite element method (FEM) Finite deformation Constitutive model Unified field equations
下载PDF
Multi-phase helical CT in diagnosis of early hepatocellular carcinoma
12
作者 Wen-Ya Liu Yong Jin +2 位作者 Run-Huan Rong Xi Ta Xin-Sheng Zhu the CT Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2003年第1期73-76,共4页
OBJECTIVES: To analyze the characteristics of early hepatocellular carcinoma by using multi-phase helical CT and assess the value of this method. METHODS: Multi-phase helical CT findings were reviewed double-blindly b... OBJECTIVES: To analyze the characteristics of early hepatocellular carcinoma by using multi-phase helical CT and assess the value of this method. METHODS: Multi-phase helical CT findings were reviewed double-blindly by radiologists. RESULTS: Altogether 24 lesions were found in 21 patients. In plain CT, the lesions were seen as hypodense or isodense areas. After contrast enhancement, 87.5% of the lesions showed regular or irregular hyperdense enhancement, whereas 12.5% demonstrated tumor vessels in arterial phase, which became hypodensed or isodensed nodules in portal phase or the hypodensed in delayed phase. The prevalence of density changes showed a hypo-hyper-hypo and hypo-hypo pattern. CONCLUSIONS: Multi-phase helical CT could reflect the blood supply of early hepatocelluar carcinoma, and is also convenient for the differential diagnosis of hepatic cavernous angioma, metastatic tumor, hepatic nodulous hyperplasia, and hepatic inflammatory granuloma. 展开更多
关键词 liver neoplasm spiral CT multi-phasE DIAGNOSIS contrast enhancement
下载PDF
Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
13
作者 朱昶胜 汪婷 +2 位作者 冯力 雷鹏 马芳兰 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期626-633,共8页
A multi-phase field model is established to simulate the growth competition and evolution behavior between seaweed and columnar dendrites during directional solidification.According to the effects of surface tension a... A multi-phase field model is established to simulate the growth competition and evolution behavior between seaweed and columnar dendrites during directional solidification.According to the effects of surface tension and interfacial energy,we quantitatively analyze the influences of factors such as inclination angles,pulling velocity,and anisotropic strength on twin growth.The results demonstrate that the pulling velocity and anisotropic strength have an important influence on the morphology and evolution of the seaweed and dendritic growth.The low pulling velocity and anisotropic strength are both key parameters for maintaining the stable morphology of seaweed during competitive growth in a bicrystal,showing that the lateral branching behavior is the root of the dendrites that can ultimately dominate the growth.And it is clarified that the lateral branching behavior and lateral blocking are the root causes of the final dominant growth of dendrites.With the increase of anisotropy strength,the seaweed is eliminated fastest in case 1,the seaweed is transformed into degenerate dendritic morphology,and eliminates the seaweed by promoting the generation and lateral growth of the lateral branches of the dendrites.The increase of pulling velocity is to increase the undercooling of favorable oriented grain and accelerate the growth rate of dendrites,thus producing more new primary dendrites for lateral expansion and accelerating the elimination rate of unfavorable oriented grain. 展开更多
关键词 multi-phase field simulation grain growth competition directional solidification twin grains
下载PDF
Multi-phase field simulation of competitive grain growth for directional solidification
14
作者 朱昶胜 高梓豪 +2 位作者 雷鹏 冯力 赵博睿 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期683-694,共12页
The multi-phase field model of grain competitive growth during directional solidification of alloy is established.Solving multi-phase field models for thin interface layer thickness conditions,the grain boundary evolu... The multi-phase field model of grain competitive growth during directional solidification of alloy is established.Solving multi-phase field models for thin interface layer thickness conditions,the grain boundary evolution and grain elimination during the competitive growth of SCN-0.24-wt%camphor model alloy bi-crystals are investigated.The effects of different crystal orientations and pulling velocities on grain boundary microstructure evolution are quantitatively analyzed.The obtained results are shown below.In the competitive growth of convergent bi-crystals,when favorably oriented dendrites are in the same direction as the heat flow and the pulling speed is too large,the orientation angle of the bi-crystal from small to large size is the normal elimination phenomenon of the favorably oriented dendrite,blocking the unfavorably oriented dendrite,and the grain boundary is along the growth direction of the favorably oriented dendrite.When the pulling speed becomes small,the grain boundary shows the anomalous elimination phenomenon of the unfavorably oriented dendrite,eliminating the favorably oriented dendrite.In the process of competitive growth of divergent bi-crystal,when the growth direction of favorably oriented dendrites is the same as the heat flow direction and the orientation angle of unfavorably oriented grains is small,the frequency of new spindles of favorably oriented grains is significantly higher than that of unfavorably oriented grains,and as the orientation angle of unfavorably oriented dendrites becomes larger,the unfavorably oriented grains are more likely to have stable secondary dendritic arms,which in turn develop new primary dendritic arms to occupy the liquid phase grain boundary space,but the grain boundary direction is still parallel to favorably oriented dendrites.In addition,the tertiary dendritic arms on the developed secondary dendritic arms may also be blocked by the surrounding lateral branches from further developing into nascent main axes,this blocking of the tertiary dendritic arms has a random nature,which can have aninfluence on the generation of nascent primary main axes in the grain boundaries. 展开更多
关键词 multi-phase field model directional solidification grain competition growth grain boundary orientation
下载PDF
Numerical simulation for separation of multi-phase immiscible fluids in porous media
15
作者 吴柏志 许友生 +1 位作者 刘扬 黄国翔 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期2046-2051,共6页
Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting ... Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles is modified by axiding relative permeability in Nithiarasu's expression with an axiditional surface tension term. As a test of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that the two coupling relative permeability coefficients K12 and K21 have the same magnitude, so the linear flux-forcing relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands. At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers with well computational efficiency. 展开更多
关键词 separation of multi-phase immiscible fluids porous media numerical simulation
下载PDF
Microstructure design and feasibility of hot stamping for new generation high strength multi-phase steels
16
作者 JIN Xuejun School of Materials Science and Engineering,Shanghai Jiaotong University,Shanghai 200240,China 《Baosteel Technical Research》 CAS 2010年第S1期49-,共1页
Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partition... Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partitioning tempering/QPT) have been investigated to obtain optimal microstructures,which are made up of martensite(hard phase),retained austenite(soft phase),and carbide or nano-bainite.Combination of hot stamping and newly developed heat treatments is discussed. 展开更多
关键词 high strength multi-phase steels hot stamping MARTENSITE retained austenite
下载PDF
Assessment of a Proposed Software Design for the Solution of Multi-Phase Mechanics Problems on Networked Laptops
17
作者 Richard Harris Thomas Impelluso 《Intelligent Information Management》 2010年第7期391-397,共7页
This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software sy... This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics. 展开更多
关键词 SOFTWARE Design multi-phasE MECHANICS PROBLEMS NETWORKED LAPTOPS
下载PDF
Implementation of a Demoisturization and Devolatilization Model in Multi-Phase Simulation of a Hybrid Entrained-Flow and Fluidized Bed Mild Gasifier
18
作者 Jobaidur Khan Ting Wang 《International Journal of Clean Coal and Energy》 2013年第3期35-53,共19页
A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly eff... A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly efficient, and compact power plant or to retrofit an existing coal-fired power plant in order to achieve lower emissions and significantly improved thermal efficiency. The core technology of the mild gasification power plant lies on the design of a compact and effective mild gasifier that can produce synthesis gases with high energy volatiles through a hybrid system: utilizing the features of both entrained-flow and fluidized bed gasifiers. To aid in the design of the mild gasifier, a computational model has been implemented to investigate the thermal-flow and gasification process inside this mild gasifier using the commercial CFD (Computational Fluid Dynamics) solver ANSYS/FLUENT. The Eulerian-Eulerian method is employed to model both the primary phase (air) and the secondary phase (coal particles). However, the Eulerian-Eulerian model used in the software does not facilitate any built-in devolatilization model. The objective of this study is therefore to implement a devolatilization model (along with demoisturization) and incorporate it into the existing code. The Navier-Stokes equations and seven species transport equations are solved with three heterogeneous (gas-solid) and two homogeneous (gas-gas) global gasification reactions. Implementation of the complete model starts from adding demoisturization first, then devolatilization, and then adding one chemical equation at a time until finally all reactions are included in the multiphase flow. The result shows that the demoisturization and devolatilization models are successfully incorporated and a large amount of volatiles are preserved as high-energy fuels in the syngas stream without being further cracked or reacted into lighter gases. The overall results are encouraging but require future experimental data for verification. 展开更多
关键词 multi-phasE SIMULATION Gasification SIMULATION Entrained-Flow GASIFIER Fluidized Bed MILD GASIFIER Clean Coal Technology
下载PDF
Modeling non-isothermal multi-phase multi-component reactive chemical transport in geological media
19
《Global Geology》 1998年第1期83-83,共1页
关键词 Modeling non-isothermal multi-phase multi-component reactive chemical transport in geological media
下载PDF
Effects of Zr substitution on structural,morphological,and magnetic properties of bismuth iron oxide phases
20
作者 A Asif M Hassan +2 位作者 S Riaz S Naseem S S Hussain 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期450-455,共6页
The present study involves co-precipitation method to grow un-doped and Zr-doped bismuth iron oxide with x_(Zr)=0.10–0.30. The molar solutions of ferric chloride(FeCl_3), zirconyle chloride(ZrOCl_2), and bismut... The present study involves co-precipitation method to grow un-doped and Zr-doped bismuth iron oxide with x_(Zr)=0.10–0.30. The molar solutions of ferric chloride(FeCl_3), zirconyle chloride(ZrOCl_2), and bismuth chloride(BiCl_3) are prepared in distilled water, and are allowed to react with sodium hydroxide(Na OH). The synthesized powders are then converted into pellets, which are sintered at 500℃ for two hours in a muffle furnace. X-ray diffraction(XRD) shows multi-phase formation in un-doped and Zr doped samples. Scanning electron microscope(SEM) depicts layered structure at low Zr concentration x_(Zr)= 0.10, while uniform surface with smaller grains and voids is observed at x_(Zr)= 0.20, but at x_(Zr)= 0.30, cracks and voids become prominent. The ferromagnetic nature of the un-doped sample is observed by vibrating sample magnetometer(VSM), while paramagnetic behavior appears due to Zr doping. The ferromagnetism in un-doped sample is lost by Zr doping, which is due to the formation of additional Fe–O–Zr bonds that induce paramagnetic behavior. 展开更多
关键词 CO-PRECIPITATION multi-phases FERROMAGNETISM PARAMAGNETISM BIFEO3
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部