In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as...In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as the ideality factor,barrier height,series resistance and saturation current,have been extracted using both analytical and heuristics methods.Differential evolution(DE),particle swarm optimization(PSO)and artificial bee colony(ABC)have been chosen as candidate heuristics algorithms,while Cheung technic was selected as analytical extraction method.The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy,convergence speed and robustness.展开更多
A novel device structure for thermally activated delayed fluorescence(TADF)top emission organic light-emitting diodes(TEOLEDs)that improves the viewing angle characteristics and reduces the efficiency roll-off is pres...A novel device structure for thermally activated delayed fluorescence(TADF)top emission organic light-emitting diodes(TEOLEDs)that improves the viewing angle characteristics and reduces the efficiency roll-off is presented.Furthermore,we describe the design and fabrication of a cavity-suppressing electrode(CSE),Ag(12 nm)/WO_(3)(65 nm)/Ag(12 nm)that can be used as a transparent cathode.While the TADF-TEOLED fabricated using the CSE exhibits higher external quantum efficiency(EQE)and improved angular dependency than the device fabricated using the microcavity-based Ag electrode,it suffers from low color purity and severe efficiency roll-off.These drawbacks can be reduced by using an optimized multi-quantum well emissive layer(MQW EML).The CSE-based TADF-TEOLED with an MQW EML fabricated herein exhibits a high EQE(18.05%),high color purity(full width at half maximum~59 nm),reduced efficiency roll-off(~46%at 1000 cd m^(−2)),and low angular dependence.These improvements can be attributed to the synergistic effect of the CSE and MQW EML.An optimized transparent CSE improves charge injection and light outcoupling with low angular dependence,and the MQW EML effectively confines charges and excitons,thereby improving the color purity and EQE significantly.The proposed approach facilitates the optimization of multiple output characteristics of TEOLEDs for future display applications.展开更多
This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the lase...This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also,we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.展开更多
A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If ...A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.展开更多
Organic green light emitting devices(LEDs) with multi-quantum well(MQW) structure were fabricated. Aromatic diamine(TPD) was used as hole-transporting layer and potential barrier layer; Tris(8-hydroxyquinoline) alumin...Organic green light emitting devices(LEDs) with multi-quantum well(MQW) structure were fabricated. Aromatic diamine(TPD) was used as hole-transporting layer and potential barrier layer; Tris(8-hydroxyquinoline) aluminum(Alq 3) was acted as electron-transporting emitter and MQW green emitter. Air-stable aluminum(Al) was used as electron-injection contact. The influence of the thickness of potential barrier layer and the number of quantum well on the electroluminescent(EL) efficiencies of the devices was investigated. The organic LEDs with two quantum wells showed enhanced EL efficiencies. Maximum external quantum efficiency and brightness were 1.04 % and 7 000 cd/m 2, respectively.展开更多
Remarkable advances in fast magic-angle spinning(MAS)techniques significantly improve the resolution of^(1)H solid-state nuclear magnetic resonance(NMR)spectra.Here,we introduce a heteronuclear-filtered^(1)H homonucle...Remarkable advances in fast magic-angle spinning(MAS)techniques significantly improve the resolution of^(1)H solid-state nuclear magnetic resonance(NMR)spectra.Here,we introduce a heteronuclear-filtered^(1)H homonuclear multi-quantum(MQ)correlation strategy available at a MAS rate of 100 kHz by combining^(1)H{X}heteronuclear-filtered methods and^(1)H homonuclear MQ correlation experiments.The proposed strategy was applied to selectively extract^(1)H signals of aluminum lactate(Al-Lac)in a mixture of Al-Lac and zinc lactate(Zn-Lac)using 27Al-filtered methods(i.e.,^(1)H{27Al}heteronuclear multiple quantum correlation(HMQC)or^(1)H{27Al}symmetry-based resonance-echo saturationpulse double-resonance(S-RESPDOR)).We demonstrate that incorporating these 27Al-filtered methods into two-dimensional(2D)^(1)He^(1)H double-quantum(DQ)/single-quantum(SQ),triple-quantum(TQ)/SQ,and even three-dimensional(3D)27Al/^(1)H(DQ)/^(1)H(SQ)experiments can facilitate the acquisition of spectra without signal overlap and targeted characterization of the^(1)H species surrounding 27Al sites.The proposed strategy is considered to efficiently extract key structural information from complex spin systems.展开更多
文摘In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as the ideality factor,barrier height,series resistance and saturation current,have been extracted using both analytical and heuristics methods.Differential evolution(DE),particle swarm optimization(PSO)and artificial bee colony(ABC)have been chosen as candidate heuristics algorithms,while Cheung technic was selected as analytical extraction method.The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy,convergence speed and robustness.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government under Grant No.2016R1A3B1908249。
文摘A novel device structure for thermally activated delayed fluorescence(TADF)top emission organic light-emitting diodes(TEOLEDs)that improves the viewing angle characteristics and reduces the efficiency roll-off is presented.Furthermore,we describe the design and fabrication of a cavity-suppressing electrode(CSE),Ag(12 nm)/WO_(3)(65 nm)/Ag(12 nm)that can be used as a transparent cathode.While the TADF-TEOLED fabricated using the CSE exhibits higher external quantum efficiency(EQE)and improved angular dependency than the device fabricated using the microcavity-based Ag electrode,it suffers from low color purity and severe efficiency roll-off.These drawbacks can be reduced by using an optimized multi-quantum well emissive layer(MQW EML).The CSE-based TADF-TEOLED with an MQW EML fabricated herein exhibits a high EQE(18.05%),high color purity(full width at half maximum~59 nm),reduced efficiency roll-off(~46%at 1000 cd m^(−2)),and low angular dependence.These improvements can be attributed to the synergistic effect of the CSE and MQW EML.An optimized transparent CSE improves charge injection and light outcoupling with low angular dependence,and the MQW EML effectively confines charges and excitons,thereby improving the color purity and EQE significantly.The proposed approach facilitates the optimization of multiple output characteristics of TEOLEDs for future display applications.
文摘This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also,we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11447132 and 11504042the Chongqing Science and Technology Commission Project under Grant Nos cstc2014jcyj A00032 and cstc2016jcyj A1158the Scientific Research Project for Advanced Talents of Yangtze Normal University under Grant No 2017KYQD09
文摘A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.
文摘Organic green light emitting devices(LEDs) with multi-quantum well(MQW) structure were fabricated. Aromatic diamine(TPD) was used as hole-transporting layer and potential barrier layer; Tris(8-hydroxyquinoline) aluminum(Alq 3) was acted as electron-transporting emitter and MQW green emitter. Air-stable aluminum(Al) was used as electron-injection contact. The influence of the thickness of potential barrier layer and the number of quantum well on the electroluminescent(EL) efficiencies of the devices was investigated. The organic LEDs with two quantum wells showed enhanced EL efficiencies. Maximum external quantum efficiency and brightness were 1.04 % and 7 000 cd/m 2, respectively.
基金the National Natural Science Foundation of China(Grants,22161132028,221721177,22127801,U1932218 and 21733013)Hubei Provincial Natural Science Foundation(2021CFA021)Youth Innovation Promotion Association,Chinese Academy of Sciences(2019326)。
文摘Remarkable advances in fast magic-angle spinning(MAS)techniques significantly improve the resolution of^(1)H solid-state nuclear magnetic resonance(NMR)spectra.Here,we introduce a heteronuclear-filtered^(1)H homonuclear multi-quantum(MQ)correlation strategy available at a MAS rate of 100 kHz by combining^(1)H{X}heteronuclear-filtered methods and^(1)H homonuclear MQ correlation experiments.The proposed strategy was applied to selectively extract^(1)H signals of aluminum lactate(Al-Lac)in a mixture of Al-Lac and zinc lactate(Zn-Lac)using 27Al-filtered methods(i.e.,^(1)H{27Al}heteronuclear multiple quantum correlation(HMQC)or^(1)H{27Al}symmetry-based resonance-echo saturationpulse double-resonance(S-RESPDOR)).We demonstrate that incorporating these 27Al-filtered methods into two-dimensional(2D)^(1)He^(1)H double-quantum(DQ)/single-quantum(SQ),triple-quantum(TQ)/SQ,and even three-dimensional(3D)27Al/^(1)H(DQ)/^(1)H(SQ)experiments can facilitate the acquisition of spectra without signal overlap and targeted characterization of the^(1)H species surrounding 27Al sites.The proposed strategy is considered to efficiently extract key structural information from complex spin systems.