Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from...Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from the shaft at a designed fall-off rotation speed, which is determined by the assembly process and the gravity. However, the two factors are ignored in the analytical method based on the Lame's equation. In this work, we conducted fall-off experiments to analyze the two factors and used the experimental data to verify the validity of the analytical method and the finite element method(FEM). The results show that FEM performs better than the analytical method in designing the falloff function of the flywheel, though FEM cannot successfully predict the strain variation with the rotational speed.展开更多
The application of virtual synchronous generator(VSG)control in flywheel energy storage systems(FESS)is an effective solution for addressing the challenges related to reduced inertia and inadequate power supply in mic...The application of virtual synchronous generator(VSG)control in flywheel energy storage systems(FESS)is an effective solution for addressing the challenges related to reduced inertia and inadequate power supply in microgrids.Considering the significant variations among individual units within a flywheel array and the poor frequency regulation performance under conventional control approaches,this paper proposes an adaptive VSG control strategy for a flywheel energy storage array(FESA).First,by leveraging the FESA model,a variable acceleration factor is integrated into the speed-balance control strategy to effectively achieve better state of charge(SOC)equalization across units.Furthermore,energy control with a dead zone is introduced to prevent SOC of the FESA from exceeding the limit.The dead zone parameter is designed based on the SOC warning intervals of the flywheel array to mitigate its impact on regular operation.In addition,VSG technology is applied for the grid-connected control of the FESA,and the damping characteristic of the VSG is decoupled from the primary frequency regulation through power differential feedback.This ensures optimal dynamic performance while reducing the need for frequent involvement in frequency regulation.Subsequently,a parameter design method is developed through a small-signal stability analysis.Consequently,considering the SOC of the FESA,an adaptive control strategy for the inertia damping and the P/ωdroop coefficient of the VSG control is proposed to optimize the grid support services of the FESA.Finally,the effectiveness of the proposed control methods is demonstrated through electromagnetic transient simulations using MATLAB/Simulink.展开更多
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
Traditional PID controllers are no longer suitable formagnetic-bearing-supported high-speed flywheels with significant gyroscopic effects. Becausegyroscopic effects greatly influence the stability of the flywheel roto...Traditional PID controllers are no longer suitable formagnetic-bearing-supported high-speed flywheels with significant gyroscopic effects. Becausegyroscopic effects greatly influence the stability of the flywheel rotor, especially at highrotational speeds. Velocity cross feedback and displacement cross feedback are used to overcomeharmful effects of nutation and precession modes, and stabilize the rotor at high rotational speeds.Theoretical analysis is given to show their effects. A control platform based on RTLinut and a PCis built to control the active magnetic bearing (AMB) system, and relevant results are reported.Using velocity cross feedback and displacement cross feedback in a closed loop control system, theflywheel successfully runs at over 20000 r/min.展开更多
The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A f...The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme.展开更多
Flywheel Energy Storage System (FESS) is used as an energy regeneration system to help with reducing peak power requirements on RTG cranes that are used to load or unload container ships. Nevertheless, with the use of...Flywheel Energy Storage System (FESS) is used as an energy regeneration system to help with reducing peak power requirements on RTG cranes that are used to load or unload container ships. Nevertheless, with the use of FESS, Port Operator can deploy undersized generator for new RTG as this will further reduce fuel consumption. This paper presents the investigation of the amount of energy and fuel consumption that can be reduced in Rubber Tyred Gantry (RTG) cranes in container terminals by the use of simulation. In addition, Variable Speed Generator is integrated to the simulation-hybridized RTG. Simulation results reveal that the total energy saving exceeded 30% relatively to conventional RTG. A hardware-in-loop system is introduced for the purpose of validating the simulation results. The hardware components procured include a FESS, a Variable Frequency Drive (VFD) and brake resistors.展开更多
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tra...The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.展开更多
In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different ...In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different sources are collected at different sampling rates.To build a complete process monitoring strategy,all these multi-rate measurements should be considered for data-based modeling and monitoring.In this paper,a novel kernel multi-rate probabilistic principal component analysis(K-MPPCA)model is proposed to extract the nonlinear correlations among different sampling rates.In the proposed model,the model parameters are calibrated using the kernel trick and the expectation-maximum(EM)algorithm.Also,the corresponding fault detection methods based on the nonlinear features are developed.Finally,a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method.展开更多
This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is ...This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is used as fairness index to analyze the fairness of WLANs instead of the channel access probability (CAP) used in the distributed coordination function (DCF). The standard COT is given by access point (AP) and broadcasted to all wireless stations. The AP and wireless stations in the WLAN can achieve COT-based fairness by adjusting their packet length, sending the multiple back-to-back packets at one time, or giving up an opportunity to access the channel. Analysis and simulations show that our algorithm can provide COT-fairness. Compared with the CAP-based algorithm, the proposed algorithm leads to improvements in aggregate throughput of IEEE 802. lib multi-rate WLANs.展开更多
The system presented in this paper allows the direct transfer of kinetic energy of a vehicle’s motion to a flywheel and vice-versa. For braking, a cable winds onto a pulley geared to the vehicle’s propulsion drivesh...The system presented in this paper allows the direct transfer of kinetic energy of a vehicle’s motion to a flywheel and vice-versa. For braking, a cable winds onto a pulley geared to the vehicle’s propulsion driveshaft as it unwinds from another pulley geared to the flywheel and then operates in reverse for the transfer of energy in the opposite direction. The cable windings are in one plane resulting in an effective pulley radius that increases when the cable is winding onto it and decreases when unwinding from it. Thus, an increasing driven-to-driving pulley velocity ratio is obtained during a period of energy transfer in either direction. A dynamic analysis simulating the process was developed. Its application is illustrated with a numerical solution based on specific assumed values of system parameters.展开更多
A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two str...A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.展开更多
<div style="text-align:justify;"> Low-density parity-check code (LDPC) not only has good performance approaching the Shannon limit, but also has low decoding complexity and flexible structure. It is a ...<div style="text-align:justify;"> Low-density parity-check code (LDPC) not only has good performance approaching the Shannon limit, but also has low decoding complexity and flexible structure. It is a research hot-spot in the field of channel coding in recent years and has a wide range of application prospects in optical communication systems. In this paper, the decoding aspects and performance of LDPC codes are analyzed and compared according to the bit error rate (BER) of LDPC codes. The computer simulation was carried out under additive white Gaussian noise (AWGN) channel and binary phase shift keying (BPSK) modulation. Through theoretical analysis and simulation results, this paper explores the way of multi-rate LDPC decoding. </div>展开更多
The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vecto...The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.展开更多
The origin and substance of the tlywheel moment calculation method of inertia mo ment of crane mechanism are set forth comprehensively and systematically in this paper, that is, the nucleus or the focus ofmoment of in...The origin and substance of the tlywheel moment calculation method of inertia mo ment of crane mechanism are set forth comprehensively and systematically in this paper, that is, the nucleus or the focus ofmoment of inertia calculation is the problem of calculating convertible tlywheelmoment. It is much better for the calculation of flywheel moment of loading move mass of lifting, traveling and rotating mechanism using the low of conservation of energy, the theorem of kinetic energyfor that of radius - changing mechanism, and the law of conservation of energy for that of all parts of gearing mechanism.展开更多
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhi...The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.展开更多
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM...In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.展开更多
Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework ...Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively.展开更多
This paper presents the design of a full-duplex multi-rate vocoder which implements an LPC-10, CELPC and VSELPC algorithms in real time. A single commercially available digital signal processor IC, the TMS320C25, is u...This paper presents the design of a full-duplex multi-rate vocoder which implements an LPC-10, CELPC and VSELPC algorithms in real time. A single commercially available digital signal processor IC, the TMS320C25, is used to perform the digital processing. The channel interfaces are configured with the design of ASIC, and including timing and control logic circuits.展开更多
As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was ap...As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.展开更多
基金supported by the National Natural Science Foundation of China(No.51576125)
文摘Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from the shaft at a designed fall-off rotation speed, which is determined by the assembly process and the gravity. However, the two factors are ignored in the analytical method based on the Lame's equation. In this work, we conducted fall-off experiments to analyze the two factors and used the experimental data to verify the validity of the analytical method and the finite element method(FEM). The results show that FEM performs better than the analytical method in designing the falloff function of the flywheel, though FEM cannot successfully predict the strain variation with the rotational speed.
基金National Natural Science Foundation of China(51977160)“Voltage Self balancing Control Method for Modular Multilevel Converter Based on Switching State Matrix”.
文摘The application of virtual synchronous generator(VSG)control in flywheel energy storage systems(FESS)is an effective solution for addressing the challenges related to reduced inertia and inadequate power supply in microgrids.Considering the significant variations among individual units within a flywheel array and the poor frequency regulation performance under conventional control approaches,this paper proposes an adaptive VSG control strategy for a flywheel energy storage array(FESA).First,by leveraging the FESA model,a variable acceleration factor is integrated into the speed-balance control strategy to effectively achieve better state of charge(SOC)equalization across units.Furthermore,energy control with a dead zone is introduced to prevent SOC of the FESA from exceeding the limit.The dead zone parameter is designed based on the SOC warning intervals of the flywheel array to mitigate its impact on regular operation.In addition,VSG technology is applied for the grid-connected control of the FESA,and the damping characteristic of the VSG is decoupled from the primary frequency regulation through power differential feedback.This ensures optimal dynamic performance while reducing the need for frequent involvement in frequency regulation.Subsequently,a parameter design method is developed through a small-signal stability analysis.Consequently,considering the SOC of the FESA,an adaptive control strategy for the inertia damping and the P/ωdroop coefficient of the VSG control is proposed to optimize the grid support services of the FESA.Finally,the effectiveness of the proposed control methods is demonstrated through electromagnetic transient simulations using MATLAB/Simulink.
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
文摘Traditional PID controllers are no longer suitable formagnetic-bearing-supported high-speed flywheels with significant gyroscopic effects. Becausegyroscopic effects greatly influence the stability of the flywheel rotor, especially at highrotational speeds. Velocity cross feedback and displacement cross feedback are used to overcomeharmful effects of nutation and precession modes, and stabilize the rotor at high rotational speeds.Theoretical analysis is given to show their effects. A control platform based on RTLinut and a PCis built to control the active magnetic bearing (AMB) system, and relevant results are reported.Using velocity cross feedback and displacement cross feedback in a closed loop control system, theflywheel successfully runs at over 20000 r/min.
文摘The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme.
文摘Flywheel Energy Storage System (FESS) is used as an energy regeneration system to help with reducing peak power requirements on RTG cranes that are used to load or unload container ships. Nevertheless, with the use of FESS, Port Operator can deploy undersized generator for new RTG as this will further reduce fuel consumption. This paper presents the investigation of the amount of energy and fuel consumption that can be reduced in Rubber Tyred Gantry (RTG) cranes in container terminals by the use of simulation. In addition, Variable Speed Generator is integrated to the simulation-hybridized RTG. Simulation results reveal that the total energy saving exceeded 30% relatively to conventional RTG. A hardware-in-loop system is introduced for the purpose of validating the simulation results. The hardware components procured include a FESS, a Variable Frequency Drive (VFD) and brake resistors.
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY19F030003)Key Research and Development Project of Zhejiang Province(2021C04030)+1 种基金the National Natural Science Foundation of China(62003306)Educational Commission Research Program of Zhejiang Province(Y202044842)。
文摘In practical process industries,a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes,which indicates that the measurements coming from different sources are collected at different sampling rates.To build a complete process monitoring strategy,all these multi-rate measurements should be considered for data-based modeling and monitoring.In this paper,a novel kernel multi-rate probabilistic principal component analysis(K-MPPCA)model is proposed to extract the nonlinear correlations among different sampling rates.In the proposed model,the model parameters are calibrated using the kernel trick and the expectation-maximum(EM)algorithm.Also,the corresponding fault detection methods based on the nonlinear features are developed.Finally,a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method.
基金Supported by National Natural Science Foundation of China (No.60472078 and No.90604013) .
文摘This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is used as fairness index to analyze the fairness of WLANs instead of the channel access probability (CAP) used in the distributed coordination function (DCF). The standard COT is given by access point (AP) and broadcasted to all wireless stations. The AP and wireless stations in the WLAN can achieve COT-based fairness by adjusting their packet length, sending the multiple back-to-back packets at one time, or giving up an opportunity to access the channel. Analysis and simulations show that our algorithm can provide COT-fairness. Compared with the CAP-based algorithm, the proposed algorithm leads to improvements in aggregate throughput of IEEE 802. lib multi-rate WLANs.
文摘The system presented in this paper allows the direct transfer of kinetic energy of a vehicle’s motion to a flywheel and vice-versa. For braking, a cable winds onto a pulley geared to the vehicle’s propulsion driveshaft as it unwinds from another pulley geared to the flywheel and then operates in reverse for the transfer of energy in the opposite direction. The cable windings are in one plane resulting in an effective pulley radius that increases when the cable is winding onto it and decreases when unwinding from it. Thus, an increasing driven-to-driving pulley velocity ratio is obtained during a period of energy transfer in either direction. A dynamic analysis simulating the process was developed. Its application is illustrated with a numerical solution based on specific assumed values of system parameters.
基金Supported by the Fundamental Research Funds for the Central Universities under Grants Nos. HEUCF101706 and HEUCF111705
文摘A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.
文摘<div style="text-align:justify;"> Low-density parity-check code (LDPC) not only has good performance approaching the Shannon limit, but also has low decoding complexity and flexible structure. It is a research hot-spot in the field of channel coding in recent years and has a wide range of application prospects in optical communication systems. In this paper, the decoding aspects and performance of LDPC codes are analyzed and compared according to the bit error rate (BER) of LDPC codes. The computer simulation was carried out under additive white Gaussian noise (AWGN) channel and binary phase shift keying (BPSK) modulation. Through theoretical analysis and simulation results, this paper explores the way of multi-rate LDPC decoding. </div>
文摘The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.
文摘The origin and substance of the tlywheel moment calculation method of inertia mo ment of crane mechanism are set forth comprehensively and systematically in this paper, that is, the nucleus or the focus ofmoment of inertia calculation is the problem of calculating convertible tlywheelmoment. It is much better for the calculation of flywheel moment of loading move mass of lifting, traveling and rotating mechanism using the low of conservation of energy, the theorem of kinetic energyfor that of radius - changing mechanism, and the law of conservation of energy for that of all parts of gearing mechanism.
文摘The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.
基金supported by the National Basic Research Program of China (Grant No. 2009CB2197)the National Natural Science Foundation of China (Grant No. 51177108)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032110066)
文摘In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
文摘Multi-user detection (MUD) based on multirate transmission in code division multiple access (CDMA) system is discussed. Under the requirement of signal interference ratio (SIR) detection at base station and framework with parallel interference cancellation, a supervision decision algorithm based on pre-decision of probabilistic data association (PDA) and hard decision is proposed. The detection performance is analyzed and simulation is implemented to show that the supervision decision algorithm improves the detection performance effectively.
文摘This paper presents the design of a full-duplex multi-rate vocoder which implements an LPC-10, CELPC and VSELPC algorithms in real time. A single commercially available digital signal processor IC, the TMS320C25, is used to perform the digital processing. The channel interfaces are configured with the design of ASIC, and including timing and control logic circuits.
基金Project(51105372) supported by the National Natural Science Foundation of ChinaProject(JC12-03-01) supported by the Research Plan of National University of Defense Technology,China
文摘As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.