The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
A multitude of climate-adaptive design approaches are embedded in regional architecture,which have a positive impact on addressing the deformed development of urban spatial patterns and the dual challenges of climate ...A multitude of climate-adaptive design approaches are embedded in regional architecture,which have a positive impact on addressing the deformed development of urban spatial patterns and the dual challenges of climate and resources.This paper examines the principles of climate adaptability embedded in the site layout and spatial organization characteristics of traditional cave dwelling villages in northern Shaanxi Province.The extracted climate adaptability principles are summarized,and the resulting design strategies that are well-suited to the contemporary urban space form are presented.Through analysis,it can be observed that traditional cave dwelling villages in northern Shaanxi are predominantly situated on south-facing slopes in proximity to water at low altitudes.These villages are characterized by compact building groups and east-west development,which is constrained by the elements of mountains and rivers.A two-level street system is generated,comprising streets parallel to the contour line and roadways perpendicular to the contour line.This results in the formation of a courtyard form enclosed by mountains.Such site layout and spatial organization exhibit excellent climate adaptability with regard to heat,ventilation,and wind storage.In light of the aforementioned considerations,the following urban spatial form design strategies are put forth:①the topographic height difference can be exploited to obtain sufficient sunshine;②the group shape can be optimized in order to reduce building energy consumption;③the best orientation of the building can be chosen to take account of both winter and summer conditions;④the height and length can be combined in order to form natural masking;⑤the D/H ratio of streets and roadways should be controlled to achieve a balance between heat gain and cooling of groups;⑥vents should be set appropriately to optimize group ventilation;⑦climate buffers should be established to increase the level of climate response.展开更多
This article presents a real engineering project showcasing the application of span-bridge construction technology for building a highway that goes over a solutional cave.An overview of the project and the details of ...This article presents a real engineering project showcasing the application of span-bridge construction technology for building a highway that goes over a solutional cave.An overview of the project and the details of applying this technology in highway construction are provided.Besides,strategies for enhancing its construction quality are also proposed.The objective of this analysis is to improve the safety and quality of similar projects.展开更多
Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks,...Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.展开更多
A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture ...A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture trans-fer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law.The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes.The reliability of the simulation has been verified through comparison of the numerical results with the annual observation data.As revealed by the numericalfindings,the internal temperature of the hill accumulator is proportional to the permeability,outside surface temperature,overground height,underground constant temperature layer depth,and underground tem-perature of the hill,and it is inversely proportional to the horizontal size of the hill.Moreover,in the considered case,the order of magnitude of the permeability of the hill is contained in the range 10-15–10-13,and displays a certain sensitivity to the rainwater seepage.展开更多
Cave animals are an excellent model system for studying adaptive evolution.At present,however,little is known about the mechanisms that enable surface colonizers to survive in the challenging environment of caves.One ...Cave animals are an excellent model system for studying adaptive evolution.At present,however,little is known about the mechanisms that enable surface colonizers to survive in the challenging environment of caves.One possibility is that these species have the necessary genetic background to respond with plastic changes to the pressures of underground habitats.To gain insight into this process,we conducted a comparative study with the fish species Telestes karsticus,which occurs in a hydrological system consisting of an interconnected stream and a cave.Results showed that T.karsticus resided year-round and spawned in Sušik cave,making it the first known cavefish in the Dinaric Karst.Cave and surface populations differed in morphological and physiological characteristics,as well as in patterns of gene expression without any evidence of genetic divergence.To test whether observed trait differences were plastic or genetic,we placed adult fish from both populations under light/dark or constant dark conditions.Common laboratory conditions erased all morphometric differences between the two morphs,suggesting phenotypic plasticity is driving the divergence of shape and size in wild fish.Lighter pigmentation and increased fat deposition exhibited by cave individuals were also observed in surface fish kept in the dark in the laboratory.Our study also revealed that specialized cave traits were not solely attributed to developmental plasticity,but also arose from adult responses,including acclimatization.Thus,we conclude that T.karsticus can adapt to cave conditions,with phenotypic plasticity playing an important role in the process of cave colonization.展开更多
DEAR EDITOR,The characiform fish Astyanax is a well-studied model system for understanding evolutionary development and genomics in cave biology.Nonetheless,considerable gaps remain in our understanding of its field e...DEAR EDITOR,The characiform fish Astyanax is a well-studied model system for understanding evolutionary development and genomics in cave biology.Nonetheless,considerable gaps remain in our understanding of its field ecology.Here,we conducted a fouryear field study and found that while cavefish spawned yearround,reproductive peaks occurred in January to February.展开更多
In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of th...In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine.展开更多
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
基金Sponsored by Beijing Urban Governance Research Base of North China University of Technology(2024CSZL07).
文摘A multitude of climate-adaptive design approaches are embedded in regional architecture,which have a positive impact on addressing the deformed development of urban spatial patterns and the dual challenges of climate and resources.This paper examines the principles of climate adaptability embedded in the site layout and spatial organization characteristics of traditional cave dwelling villages in northern Shaanxi Province.The extracted climate adaptability principles are summarized,and the resulting design strategies that are well-suited to the contemporary urban space form are presented.Through analysis,it can be observed that traditional cave dwelling villages in northern Shaanxi are predominantly situated on south-facing slopes in proximity to water at low altitudes.These villages are characterized by compact building groups and east-west development,which is constrained by the elements of mountains and rivers.A two-level street system is generated,comprising streets parallel to the contour line and roadways perpendicular to the contour line.This results in the formation of a courtyard form enclosed by mountains.Such site layout and spatial organization exhibit excellent climate adaptability with regard to heat,ventilation,and wind storage.In light of the aforementioned considerations,the following urban spatial form design strategies are put forth:①the topographic height difference can be exploited to obtain sufficient sunshine;②the group shape can be optimized in order to reduce building energy consumption;③the best orientation of the building can be chosen to take account of both winter and summer conditions;④the height and length can be combined in order to form natural masking;⑤the D/H ratio of streets and roadways should be controlled to achieve a balance between heat gain and cooling of groups;⑥vents should be set appropriately to optimize group ventilation;⑦climate buffers should be established to increase the level of climate response.
文摘This article presents a real engineering project showcasing the application of span-bridge construction technology for building a highway that goes over a solutional cave.An overview of the project and the details of applying this technology in highway construction are provided.Besides,strategies for enhancing its construction quality are also proposed.The objective of this analysis is to improve the safety and quality of similar projects.
基金provided by the independent research subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No. CXZZ13_0947)
文摘Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.
文摘A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture trans-fer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law.The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes.The reliability of the simulation has been verified through comparison of the numerical results with the annual observation data.As revealed by the numericalfindings,the internal temperature of the hill accumulator is proportional to the permeability,outside surface temperature,overground height,underground constant temperature layer depth,and underground tem-perature of the hill,and it is inversely proportional to the horizontal size of the hill.Moreover,in the considered case,the order of magnitude of the permeability of the hill is contained in the range 10-15–10-13,and displays a certain sensitivity to the rainwater seepage.
基金supported by the Tenure Track Pilot Programme of the Croatian Science FoundationEcole Polytechnique Fédérale de Lausanne and Project TTP-2018-07-9675 Evolution in the Dark,with funds from the Croatian-Swiss Research Programme
文摘Cave animals are an excellent model system for studying adaptive evolution.At present,however,little is known about the mechanisms that enable surface colonizers to survive in the challenging environment of caves.One possibility is that these species have the necessary genetic background to respond with plastic changes to the pressures of underground habitats.To gain insight into this process,we conducted a comparative study with the fish species Telestes karsticus,which occurs in a hydrological system consisting of an interconnected stream and a cave.Results showed that T.karsticus resided year-round and spawned in Sušik cave,making it the first known cavefish in the Dinaric Karst.Cave and surface populations differed in morphological and physiological characteristics,as well as in patterns of gene expression without any evidence of genetic divergence.To test whether observed trait differences were plastic or genetic,we placed adult fish from both populations under light/dark or constant dark conditions.Common laboratory conditions erased all morphometric differences between the two morphs,suggesting phenotypic plasticity is driving the divergence of shape and size in wild fish.Lighter pigmentation and increased fat deposition exhibited by cave individuals were also observed in surface fish kept in the dark in the laboratory.Our study also revealed that specialized cave traits were not solely attributed to developmental plasticity,but also arose from adult responses,including acclimatization.Thus,we conclude that T.karsticus can adapt to cave conditions,with phenotypic plasticity playing an important role in the process of cave colonization.
基金supported by Marist College and its School of Science(to L.E.),an ANR grant(BLINDTEST),an FRM grant(Equipe FRM)(to S.R.),and a collaborative exchange program(Ecos-Nord)to S.R.and Patricia Ornelas-Garcia。
文摘DEAR EDITOR,The characiform fish Astyanax is a well-studied model system for understanding evolutionary development and genomics in cave biology.Nonetheless,considerable gaps remain in our understanding of its field ecology.Here,we conducted a fouryear field study and found that while cavefish spawned yearround,reproductive peaks occurred in January to February.
基金supported by the State Key Research Development Program of China(2022YFC3004602)Independent Research fund of Joint NationalLocal Engineering Research Centre for Safe and Precise Coal Mining(Anhui University of Science and Technology)(EC2022001)+2 种基金the National Natural Science Foundation of China(41872205)Beijing Natural Science Foundation(8202041)the Fundamental Research Funds for the Central Universities(2022YJSLJ08,2022JCCXNY03).
文摘In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine.