期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于ICEEMDAN-MPE和GWO-SVM的滚动轴承故障诊断方法
1
作者 许浩飞 潘存治 《国防交通工程与技术》 2024年第1期33-37,96,共6页
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation... 针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy,MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine,GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 展开更多
关键词 滚动轴承 改进自适应噪声完备集成经验模态分解(ICEEMDAN) 多尺度排列熵(mpe) 支持向量机(SVM) 灰狼算法(GWO) 故障诊断
下载PDF
基于InMPE和MFO-SVM的变负载滚动轴承故障诊断 被引量:2
2
作者 袁建明 刘宇 +1 位作者 胡志辉 王磊 《机电工程》 CAS 北大核心 2023年第8期1185-1193,共9页
由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺... 由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺度排列熵(MPE)中的线性插值,设计了InMPE算法,利用美国凯斯西储大学(CWRU)轴承数据集,分析了不同序列长度、嵌入维数和负载对InMPE的影响;然后,使用飞蛾火焰算法(MFO)优化了支持向量机(SVM),构建了基于InMPE和MFO-SVM的故障诊断模型;最后,搭建了轴承故障诊断试验台,制作了变负载工况下滚动轴承故障特征样本集,对基于InMPE与MFO-SVM的故障诊断方法的有效性和先进性进行了验证。研究结果表明:在变负载工况下,采用基于InMPE与MFO-SVM方法所得的故障识别准确率达到了98.5%,而采用传统MPE方法所得的故障识别准确率为95.9%;在噪声背景下,采用基于InMPE与MFO-SVM方法所得的识别准确率为92.4%,优于后者的80.0%准确率;证明基于InMPE与MFO-SVM的方法能有效识别出滚动轴承的故障信息,且对噪声具有较好的鲁棒性。 展开更多
关键词 滚动轴承 故障诊断 变负载工况 多尺度排列熵 插值多尺度排列熵 飞蛾火焰算法 支持向量机
下载PDF
基于ICEEMDAN-MPE-RF和SVM的齿轮箱特征提取与故障诊断 被引量:2
3
作者 丁晓锋 张宇华 《机车电传动》 北大核心 2023年第1期42-50,共9页
针对齿轮箱非平稳振动信号特征提取难、特征向量冗余度高和故障识别率低的问题,提出基于改进的自适应噪声完备集成经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)、多尺度排列熵... 针对齿轮箱非平稳振动信号特征提取难、特征向量冗余度高和故障识别率低的问题,提出基于改进的自适应噪声完备集成经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)、多尺度排列熵(Multi-scale permutation entropy,MPE)、随机森林(Random forest,RF)特征重要性排序和支持向量机(Support vector machine,SVM)的齿轮箱特征提取与故障诊断方法。首先,通过ICEEMDAN将各种故障状态的齿轮振动信号分解为一系列不同频率分布的本征模态分量(Intrinsic mode functions,IMF);然后,计算各阶IMF的MPE值获得非平稳信号时频分布下的非线性动力学特征;最后,通过RF算法评估特征重要性,选择高重要性敏感特征组成最优特征子集输入SVM进行故障模式识别。试验结果表明,该方法特征提取和表征能力强,在不同工况下的平均识别率可达99.79%,在多工况和小样本数据集上比其他方法更具稳健性。 展开更多
关键词 齿轮箱 改进的自适应噪声完备集成经验模态分解 多尺度排列熵 随机森林 支持向量机 特征提取 故障诊断
下载PDF
基于改进小波阈值—CEEMDAN的变压器局部放电超声波信号白噪声抑制方法 被引量:3
4
作者 周晶 罗日成 黄军 《高压电器》 CAS CSCD 北大核心 2024年第1期163-171,共9页
为了有效去除变压器局部放电超声信号中的白噪声干扰,提高后续局部放电模式识别及定位的准确性,提出了一种基于改进小波阈值和自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEE... 为了有效去除变压器局部放电超声信号中的白噪声干扰,提高后续局部放电模式识别及定位的准确性,提出了一种基于改进小波阈值和自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的变压器局部放电超声波信号去噪方法。首先,通过对放电信号进行CEEMDAN分解得到一系列由高频到低频的本征模函数IMF(intrinsic mode function);然后,利用多尺度排列熵(multi-scale permutation entropy,MPE)算法计算各阶IMF分量的排列熵PE(permutation entropy),根据各IMF的排列熵值确定信号的去噪阈值与有效阈值。对高于去噪阈值的IMF分量采用改进小波阈值法进行去噪处理,对低于有效阈值的IMF分量视为基线漂移进行剔除。最后,通过重构去噪分量与剩余分量来获得去噪后的超声波信号。仿真和实验结果均表明,文中所提出的去噪算法大大提高了信号的信噪比,并保留了原始超声波信号中的有效信息,对提高后续利用超声波信号进行局部放电模式识别及定位的精确性具有重要意义。 展开更多
关键词 局部放电 超声波信号去噪 改进小波阈值 多尺度排列熵 CEEMDAN
下载PDF
基于VMD_MPE和FCM聚类的变转速工况下转子不平衡故障诊断方法 被引量:5
5
作者 钟志贤 马李奕 +2 位作者 蔡忠侯 段一戬 陈金华 《振动与冲击》 EI CSCD 北大核心 2022年第14期290-298,共9页
旋转机械在变转速工况下转子不平衡故障诊断问题一直是故障诊断领域的难点,为解决该问题,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multiscale permutation entropy,MPE)和模糊C均值(fuzzy C means... 旋转机械在变转速工况下转子不平衡故障诊断问题一直是故障诊断领域的难点,为解决该问题,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multiscale permutation entropy,MPE)和模糊C均值(fuzzy C means,FCM)聚类结合的故障诊断方法(VMD_MPE-FCM)。首先,用VMD对转子的振动信号进行处理,得到若干本征模态分量(intrinsic mode function,IMF);然后,根据转子不平衡故障时一倍频(1×)处振幅剧烈增加的现象,从VMD得到的各IMF频谱图中筛选出最能表征转子不平衡故障特征的IMF;进而采用MPE法对筛选出的IMF进行量化;最后,将量化所得值作为特征向量输入FCM,得到各转速工况下的标准聚类中心,采用择近原则,运用模糊贴近算法计算出待识别数据与标准聚类中心的贴近度,从而实现变转速工况下转子不平衡的故障识别。在转子试验台上采用VMD_MPE-FCM法进行了变转速工况下转子不平衡故障诊断试验,试验结果表明:该方法是有效的,可以准确、高效地提取出转子故障特征,能够很好地识别出不同转速工况下转子的不平衡故障。 展开更多
关键词 变转速工况 转子不平衡故障 变分模态分解(VMD) 多尺度排列熵(mpe) 模糊C均值(FCM) 故障诊断
下载PDF
基于FSC-MPE与BP神经网络的滚动轴承故障诊断方法 被引量:9
6
作者 刘俊锋 董宝营 +1 位作者 俞翔 万海波 《中国舰船研究》 CSCD 北大核心 2021年第6期183-190,共8页
[目的]提出一种从强背景噪声、非平稳、非线性的复杂设备滚动轴承早期冲击故障振动信号中有效提取故障特征并进行故障模式识别的方法。[方法]首先,利用快速谱相关(FSC)分析提取原始振动信号的故障特征,并利用多尺度排列熵(MPE)对故障特... [目的]提出一种从强背景噪声、非平稳、非线性的复杂设备滚动轴承早期冲击故障振动信号中有效提取故障特征并进行故障模式识别的方法。[方法]首先,利用快速谱相关(FSC)分析提取原始振动信号的故障特征,并利用多尺度排列熵(MPE)对故障特征进行量化;然后,将故障特征数据输入BP神经网络进行故障诊断模型训练与测试;最后,对变速情况下的滚动轴承故障模拟实验数据和美国凯斯西储大学公开的轴承故障试验数据集进行故障识别研究。[结果]结果显示:所提方法对不同类型的故障具有较高的辨识精度,可达97%以上。[结论]研究验证了基于FSC-MPE与BP神经网络的滚动轴承故障诊断方法的可行性和优越性,可为滚动轴承健康状态评估提供技术支持。 展开更多
关键词 滚动轴承 故障诊断 快速谱相关 多尺度排列熵 BP神经网络
下载PDF
基于QPSO‐MPE的滚动轴承故障识别方法 被引量:8
7
作者 王望望 邓林峰 +1 位作者 赵荣珍 张爱华 《振动.测试与诊断》 EI CSCD 北大核心 2021年第1期62-68,200,201,共9页
为准确辨识滚动轴承故障类型,提出了一种基于量子粒子群优化多尺度排列熵(quantum⁃behaved particle swarm optimization and multi⁃scale permutation entropy,简称QPSO⁃MPE)的滚动轴承故障识别方法。首先,对滚动轴承的原始振动信号进... 为准确辨识滚动轴承故障类型,提出了一种基于量子粒子群优化多尺度排列熵(quantum⁃behaved particle swarm optimization and multi⁃scale permutation entropy,简称QPSO⁃MPE)的滚动轴承故障识别方法。首先,对滚动轴承的原始振动信号进行集成经验模态分解(ensemble empirical mode decomposition,简称EEMD),得到一系列内禀模态分量(intrinsic mode function,简称IMF)和一个趋势项,并以峭度作为度量指标筛选出含有主要故障特征信息的IMF来重构振动信号;然后,利用量子粒子群优化算法对多尺度排列熵的关键参数进行优化,得到其模型计算重构信号的多尺度排列熵,从而构建轴承故障的多尺度排列熵特征集;最后,将故障特征集输入GG(Gath⁃Geva)模糊聚类算法进行聚类识别。实验结果表明,基于QPSO⁃MPE的滚动轴承故障识别方法可实现滚动轴承典型故障的准确辨识,证明了QPSO⁃MPE在故障特征提取方面的有效性。 展开更多
关键词 滚动轴承故障识别 量子粒子群优化 多尺度排列熵 集成经验模态分解 GG模糊聚类
下载PDF
基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法研究 被引量:6
8
作者 彭亚雄 刘广进 +2 位作者 苏莹 陈春晖 刘运思 《振动与冲击》 EI CSCD 北大核心 2022年第13期135-141,共7页
实测矿山爆破地震波信号含有大量高频噪声,一定程度上掩盖了真实信号特征,不利于爆破有害效应分析。为了有效降低实测信号的噪声成分,提出了基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法。将原信号进行变分模态分解(intrinsic mo... 实测矿山爆破地震波信号含有大量高频噪声,一定程度上掩盖了真实信号特征,不利于爆破有害效应分析。为了有效降低实测信号的噪声成分,提出了基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法。将原信号进行变分模态分解(intrinsic mode function,VMD)获得本征模态函数(variational mode decomposition,IMF),利用能量差参数ξ自适应确定模态数K,对IMF分量进行多尺度排列熵(multi-scale permutation entropy,MPE)的随机性检测,准确区分出真实IMF和噪声IMF,去除原信号中的噪声IMF以达到降噪目的。对3组实测矿山爆破地震波信号进行降噪处理,结果表明该模型能够较好地去除高频噪声,保留了信号真实成分;其降噪效果均优于EEMD-MPE、CEEMDAN-MPE算法,验证了自适应VMD-MPE降噪方法的有效性。 展开更多
关键词 矿山爆破 地震波信号 自适应VMD算法 多尺度排列熵
下载PDF
基于VMD-MPE结合概率神经网络和极限学习机的滚动轴承故障诊断分析 被引量:2
9
作者 曾宪旺 孙文磊 +2 位作者 王宏伟 徐甜甜 张凡 《热加工工艺》 北大核心 2022年第10期157-163,共7页
为揭示滚动轴承的多参量故障特性,提出了变分模态分解和多尺度排列熵相结合的方法进行特征提取并通过不同的算法进行故障诊断。首先对滚动轴承故障信号进行变分模态分解,其次利用多尺度排列熵量化各模态分量的故障特征,最后对计算所得... 为揭示滚动轴承的多参量故障特性,提出了变分模态分解和多尺度排列熵相结合的方法进行特征提取并通过不同的算法进行故障诊断。首先对滚动轴承故障信号进行变分模态分解,其次利用多尺度排列熵量化各模态分量的故障特征,最后对计算所得熵值组成特征向量集将其导入概率神经网络、极限学习机和支持向量机中进行诊断,对比分析测试时间和正确概率。结果表明,该方法能有效提取故障特征并且准确实现故障模式的分类识别,进而提高了故障识别概率。 展开更多
关键词 变分模态分解 多尺度排列熵 极限学习机 故障诊断
下载PDF
基于CEEMDAN多尺度排列熵和SO-RELM的高压隔膜泵单向阀故障诊断 被引量:12
10
作者 李瑞 范玉刚 《振动与冲击》 EI CSCD 北大核心 2023年第5期127-135,共9页
高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研... 高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研究。提取振动信号多尺度排列熵特征,用于建立结构优化正则化极限学习机(structure optimization regularized extreme learning machine, SO-RELM)故障诊断模型,模型利用K-means优化RELM结构,提高模型识别精确度及稳定性。首先采用自适应噪声完备经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将高压隔膜泵单向阀振动信号自适应分解为多个固有模态分量(intrinsic mode function, IMF),以相关系数为指标,优选包含故障特征信息丰富的分量;然后,计算IMFs的多尺度排列熵值,提取信号的非线性动力学特征;最后,基于多尺度排列熵,建立基于SO-RELM的故障诊断模型。试验结果表明,CEEMDAN多尺度排列熵能够准确表征高压隔膜泵单向阀运行状态的非线性动力学特征,基于CEEMDAN多尺度排列熵建立的SO-RELM故障模型,能够有效识别高压隔膜泵单向阀工况类型,准确率达98.89%。 展开更多
关键词 自适应噪声完备经验模态分解 排列熵 结构优化正则化极限学习机 故障诊断
下载PDF
多扰动下微电网故障检测方法 被引量:4
11
作者 喻贞楷 王斌 +2 位作者 闫墉 徐万万 方宇辰 《电力系统及其自动化学报》 CSCD 北大核心 2023年第12期151-158,共8页
针对微电网复杂运行方式及故障信号特征薄弱难以提取从而造成故障检测困难的问题,提出一种基于逐次模态分解与多尺度排列熵联合使用的微电网故障检测方法。针对变分模态分解的K值需人为设定的问题,通过增加分解约束条件,自适应分解得到... 针对微电网复杂运行方式及故障信号特征薄弱难以提取从而造成故障检测困难的问题,提出一种基于逐次模态分解与多尺度排列熵联合使用的微电网故障检测方法。针对变分模态分解的K值需人为设定的问题,通过增加分解约束条件,自适应分解得到固有模态函数,并引入峭度值对其进行优化重构。利用多尺度排列熵对信号突变敏感的优点,提取优化后的故障信号特征,从而表征不同故障类型。由于核极限学习机模型精度受参数C、γ的影响,利用鲸鱼优化算法对其进行优化,将故障特征作为输入进行学习,从而构成微电网故障检测模型。最后,在PSCAD仿真平台搭建微电网系统进行仿真实验,实验结果表明本方法不受接地电阻、故障点及故障时刻等影响,在微电网不同运行状态下均能实现准确故障检测。 展开更多
关键词 变分模态分解 多尺度排列熵 微电网 故障检测 鲸鱼寻优算法
下载PDF
多尺度排列熵及其在滚动轴承故障诊断中的应用 被引量:100
12
作者 郑近德 程军圣 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2013年第19期2641-2646,共6页
引入多尺度排列熵(MPE)的概念,用来检测振动信号不同尺度下的动力学突变行为,并将其应用于机械故障诊断中滚动轴承故障特征的提取,结合支持向量机(SVM),提出了一种基于MPE和SVM的滚动轴承故障诊断方法,将新提出的滚动轴承故障诊断方法... 引入多尺度排列熵(MPE)的概念,用来检测振动信号不同尺度下的动力学突变行为,并将其应用于机械故障诊断中滚动轴承故障特征的提取,结合支持向量机(SVM),提出了一种基于MPE和SVM的滚动轴承故障诊断方法,将新提出的滚动轴承故障诊断方法应用于实验数据分析,并通过与BP神经网络对比,结果表明,该方法能够有效地提取故障特征,实现故障类型的诊断。 展开更多
关键词 排列熵 多尺度排列熵 滚动轴承 故障诊断 支持向量机
下载PDF
基于多尺度排列熵的液压泵故障识别 被引量:30
13
作者 王余奎 李洪儒 叶鹏 《中国机械工程》 EI CAS CSCD 北大核心 2015年第4期518-523,共6页
将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡... 将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡量振动信号复杂度的不足,在对多尺度排列熵进行研究的基础上提出了一种综合多尺度排列熵熵值和排列熵变化趋势的指标——多尺度排列熵偏均值,对液压泵实测信号的分析结果验证了该指标作为液压泵故障特征的有效性和优越性。 展开更多
关键词 多尺度排列熵 偏均值 液压泵 故障特征
下载PDF
融合表面肌电和加速度信号的下肢运动模式识别研究 被引量:8
14
作者 席旭刚 汤敏彦 +2 位作者 张自豪 张启忠 罗志增 《电子学报》 EI CAS CSCD 北大核心 2017年第11期2735-2741,共7页
为了提高下肢运动模式识别率,本文设计了一种融合表面肌电和加速度信号的下肢运动模式识别方法.首先,用局部均值分解将表面肌电信号分解为多个乘积函数(Product Functions,PFs),再计算PF成分的多尺度排序熵.然后,通过拉普拉斯权重(Lapla... 为了提高下肢运动模式识别率,本文设计了一种融合表面肌电和加速度信号的下肢运动模式识别方法.首先,用局部均值分解将表面肌电信号分解为多个乘积函数(Product Functions,PFs),再计算PF成分的多尺度排序熵.然后,通过拉普拉斯权重(Laplacian score,LS)特征选择算法选定每路肌电信号的一个尺度排序熵为特征,并把该特征和加速度信号的排序熵组成特征向量.最后,根据类内欧氏距离和类间样本分布,设计了改进的二叉树支持向量机,把特征向量输入该支持向量机进行下肢运动模式分类.实验结果表明所提方法对七个日常动作的平均识别率达到98.62%,相较于其他方法有较高的识别率. 展开更多
关键词 下肢运动模式识别 表面肌电信号 加速度信号 多尺度排序熵 改进二叉树支持向量机
下载PDF
EEMD-多尺度排列熵的GPS高程时间序列降噪方法 被引量:8
15
作者 鲁铁定 谢建雄 《大地测量与地球动力学》 CSCD 北大核心 2021年第2期111-115,220,共6页
针对GPS高程时间序列受各类噪声干扰的影响,导致难以提取有用信息的问题,提出一种基于整体经验模态分解(EEMD)结合多尺度排列熵(MPE)的阈值降噪方法。该方法以EEMD为核心算法,将原始信号分解成一系列本征模态函数(IMF),并采用MPE作为指... 针对GPS高程时间序列受各类噪声干扰的影响,导致难以提取有用信息的问题,提出一种基于整体经验模态分解(EEMD)结合多尺度排列熵(MPE)的阈值降噪方法。该方法以EEMD为核心算法,将原始信号分解成一系列本征模态函数(IMF),并采用MPE作为指标将其分类为噪声IMF、混合IMF和信息IMF;然后利用阈值函数处理混合IMF,实现二次降噪;再重构降噪后的数据与信息IMF,获得降噪结果。仿真信号和实例分析结果表明,该方法与相关系数法、MPE法相比,降噪评价指标RMSE、SNR和d nSNR均为最优,说明该降噪方法效果最好,本文方法获得的降噪结果能够更好地反映出时间序列本身的非线性变化特性,可为GPS高程时间序列分析提供可靠依据。 展开更多
关键词 经验模态分解 多尺度排列熵 GPS高程时间序列 阈值降噪
下载PDF
熵值法对某矿用自卸车驾驶室振动的分析与优化
16
作者 周新涛 崔亚辉 马娜 《中国工程机械学报》 北大核心 2019年第6期554-560,共7页
以某矿用自卸车驾驶室振动为例,采用试验测试法对该车进行矿区试验,测得了驾驶室内各测点的实测数据.将实测数据进行奇异值分解(SVD),得出了特征信号的奇异值和奇异值差分谱的相空间,并以此重构出降噪后的振动信号.采用多尺度排列熵(MPE... 以某矿用自卸车驾驶室振动为例,采用试验测试法对该车进行矿区试验,测得了驾驶室内各测点的实测数据.将实测数据进行奇异值分解(SVD),得出了特征信号的奇异值和奇异值差分谱的相空间,并以此重构出降噪后的振动信号.采用多尺度排列熵(MPE)法将该信号进行熵值计算,算出测点处在3个坐标方向上的振动规律.并对特征信号进行频响分析,获得了振动频率与人体敏感频段重叠.在此基础上,对驾驶室悬置系统的振动性能进行优化,其优化后的悬置系统能有效避开人体最敏感的频段,其效果满足了设计要求. 展开更多
关键词 矿用自卸车 驾驶室 奇异值 多尺度排列熵(mpe) 振动 优化
下载PDF
基于多尺度排列熵和线性局部切空间排列的机械故障诊断特征提取 被引量:10
17
作者 赵建岗 宁静 +2 位作者 宁云志 陈春俊 李艳萍 《振动与冲击》 EI CSCD 北大核心 2021年第13期136-145,共10页
机械设备监控系统收集的大量信号通常是包含多种自然振荡模式的非线性信号,这意味着单尺度特征提取无法表征这些非线性信号。而对于高维特征矩阵,也需要进一步提取主要的低维特征。针对这两个问题,提出了一种结合多尺度排列熵和线性局... 机械设备监控系统收集的大量信号通常是包含多种自然振荡模式的非线性信号,这意味着单尺度特征提取无法表征这些非线性信号。而对于高维特征矩阵,也需要进一步提取主要的低维特征。针对这两个问题,提出了一种结合多尺度排列熵和线性局部切线空间排列(MPE-LLTSA)的非线性特征提取方法。首先通过MPE计算信号以获得具有高维度的多尺度特征。然后利用LLTSA挖掘嵌入的内在结构,实现低维特征提取。最后引入最小二乘支持向量机(LSSVM)来训练和识别低维特征。试验结果表明了该方法在机械模式分类和故障识别领域的应用潜力。 展开更多
关键词 特征提取 多尺度排列熵(mpe) 线性局部切线空间排列(LLTSA) 机械故障诊断 轴承
下载PDF
应用多参量和高斯过程分类的故障诊断方法 被引量:1
18
作者 王斌 崔宝珍 《机械科学与技术》 CSCD 北大核心 2019年第9期1380-1385,共6页
由于齿轮箱振动信号的非平稳非线性等问题加大了故障诊断的难度,本文提出了一种基于互补集合经验模态分解(CEEMD)和多尺度排列熵(MPE)、样本熵(SE)相结合的故障特征提取方法。首先对齿轮箱振动信号进行互补集合经验模态分解,并根据相关... 由于齿轮箱振动信号的非平稳非线性等问题加大了故障诊断的难度,本文提出了一种基于互补集合经验模态分解(CEEMD)和多尺度排列熵(MPE)、样本熵(SE)相结合的故障特征提取方法。首先对齿轮箱振动信号进行互补集合经验模态分解,并根据相关系数原则对各模态分量进行筛选和重构,再利用多尺度排列熵对筛选出的模态分量进行特征提取,同时对重构后的信号提取其样本熵作为特征值;最后将提取出的多种故障特征融合输入到高斯过程分类器中进行实验验证,实验结果表明该方法提取齿轮箱振动信号的故障特征是有效的,高斯过程分类能快速准确地分辨出故障结果。 展开更多
关键词 齿轮箱 互补集合经验模态分解 多尺度排列熵 高斯过程分类 故障诊断
下载PDF
A comparative study of four nonlinear dynamic methods and their applications in classification of ship-radiated noise
19
作者 Yu-xing Li Shang-bin Jiao +2 位作者 Bo Geng Qing Zhang You-min Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期183-193,共11页
Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE int... Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE into the field of underwater acoustic signal processing for complexity feature extraction of ship radiated noise,and then propose a novel classification method for ship-radiated noise based on RCMDE and k-nearest neighbor(KNN),termed RCMDE-KNN.The results of a comparative experiment show that the proposed RCMDE-KNN classification method can effectively extract the complexity features of ship-radiated noise,and has better classification performance under one and two scales than the other three classification methods based on multi-scale permutation entropy(MPE)and KNN,multi-scale weighted-permutation entropy(MW-PE)and KNN,and multi-scale dispersion entropy(MDE)and KNN,termed MPE-KNN,MW-PE-KNN,and MDE-KNN.It is proved that the RCMDE-KNN classification method for ship-radiated noise is feasible and effective,and can obtain a very high recognition rate. 展开更多
关键词 Nonlinear dynamic Refined composite multi-scale dispersion entropy(RCMDE) multi-scale dispersion entropy(MDE) multi-scale weighted-permutation entropy (MW-PE) multi-scale permutation entropy(mpe) Classification of ship-radiated noise
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部