The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ...Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy展开更多
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me...目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。展开更多
在强噪声环境下,针对局部均值分解(Local Mean Decomposition,LMD)出现的模态混叠现象,提出了总体局部均值分解方法(Ensemble Local Mean Decomposition,ELMD),但ELMD中所添加的白噪声不能完全被中和,这会导致PF分量受到所加白噪声的影...在强噪声环境下,针对局部均值分解(Local Mean Decomposition,LMD)出现的模态混叠现象,提出了总体局部均值分解方法(Ensemble Local Mean Decomposition,ELMD),但ELMD中所添加的白噪声不能完全被中和,这会导致PF分量受到所加白噪声的影响,导致重构误差增大。因此,提出基于PE-CELMD(Permutation Entropy-Complementary Ensemble Local Mean Decomposition)的齿轮箱复合故障诊断方法,该思路是在ELMD的基础上通过添加成对白噪声再结合排列熵(PermutationEntropy,PE)的方法优化LMD。将该方法应用于仿真信号和实测信号,并通过与LMD、CELMD对比,结果表明,PE-CELMD方法是一种有效的复合故障特征提取方法。展开更多
针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值...针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。展开更多
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
基金supported by the National Natural Science Foundation of China(51375405)Independent Project of the State Key Laboratory of Traction Power(2016TP-10)
文摘Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy
文摘目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。
文摘在强噪声环境下,针对局部均值分解(Local Mean Decomposition,LMD)出现的模态混叠现象,提出了总体局部均值分解方法(Ensemble Local Mean Decomposition,ELMD),但ELMD中所添加的白噪声不能完全被中和,这会导致PF分量受到所加白噪声的影响,导致重构误差增大。因此,提出基于PE-CELMD(Permutation Entropy-Complementary Ensemble Local Mean Decomposition)的齿轮箱复合故障诊断方法,该思路是在ELMD的基础上通过添加成对白噪声再结合排列熵(PermutationEntropy,PE)的方法优化LMD。将该方法应用于仿真信号和实测信号,并通过与LMD、CELMD对比,结果表明,PE-CELMD方法是一种有效的复合故障特征提取方法。
文摘针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。