期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis
1
作者 Wenchao Ma 《Energy Engineering》 EI 2023年第7期1685-1699,共15页
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra... The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy. 展开更多
关键词 Photovoltaic power generation short term forecast multiscale permutation entropy local mean decomposition singular spectrum analysis
下载PDF
Adaptive Bearing Fault Diagnosis based on Wavelet Packet Decomposition and LMD Permutation Entropy 被引量:1
2
作者 WANG Ming-yue MIAO Bing-rong YUAN Cheng-biao 《International Journal of Plant Engineering and Management》 2016年第4期202-216,共15页
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ... Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy 展开更多
关键词 fault diagnosis wavelet packet decomposition WPD local mean decomposition LMD permutation entropy support vector machine (SVM)
下载PDF
基于MPE和改进K⁃means算法的分接开关机械故障诊断方法 被引量:12
3
作者 马宏忠 徐艳 魏海增 《高压电器》 CAS CSCD 北大核心 2020年第8期198-204,共7页
随着有载调压变压器在电网应用的增多以及有载分接开关(on⁃load tap⁃changer,OLTC)频繁地调节,分接开关的故障率在不断增加。为更有效进行OLTC机械故障诊断,提出一种基于MPE和改进K⁃means算法的OLTC机械故障诊断方法。首先,模拟OLTC的... 随着有载调压变压器在电网应用的增多以及有载分接开关(on⁃load tap⁃changer,OLTC)频繁地调节,分接开关的故障率在不断增加。为更有效进行OLTC机械故障诊断,提出一种基于MPE和改进K⁃means算法的OLTC机械故障诊断方法。首先,模拟OLTC的不同机械故障,采集振动信号;其次,为实现非线性振动信号下OLTC的故障诊断,采用多尺度排列熵(MPE)进行OLTC机械故障状态的特征提取;再次,采用粒子群(PSO)优化的K⁃means聚类算法诊断OLTC机械故障;最后,将该方法用于OLTC的机械故障诊断,并与传统K⁃means算法以及BP网络的诊断效果进行对比。结果表明,提出的基于MPE和改进K⁃means算法适用于OLTC机械故障诊断,诊断效果优于传统K⁃means算法以及BP网络,且其稳定性较高。 展开更多
关键词 OLTC K⁃means算法 粒子群优化的K⁃means算法 多尺度排列熵
下载PDF
基于集合经验模态分解和排列熵的核电厂信号降噪研究
4
作者 王雨辰 李鼎 +1 位作者 胡玥 孙晨雨 《核科学与工程》 CAS CSCD 北大核心 2024年第1期98-107,共10页
本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实... 本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实测信号中的有用信号和噪声信号的区分。对于后者,采用改进的小波软阈值降噪法进行降噪。最后,根据排列熵筛分后的有用信号和改进的小波软阈值降噪后的噪声信号进行重构,得到降噪后的信号。另外,本文也采用了主流的经验模态分解和局部均值分解对该信号进行了处理,并将分析结果进行对比。对比结果表明,基于本文所提方法得到的降噪后信号排列熵较小,表明降噪效果要优于以上两种方法。 展开更多
关键词 信号降噪 经验模态分解 局部均值分解 集合经验模态分解 排列熵
下载PDF
基于改进多尺度均值排列熵和参数优化SVM的齿轮箱故障诊断方法
5
作者 郭盼盼 张文斌 +1 位作者 崔奔 徐晗 《机械传动》 北大核心 2024年第4期154-161,共8页
当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Per⁃mutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量... 当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Per⁃mutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量机(Support Vector Machine,SVM)的齿轮箱故障识别方法。首先,引用粒子群优化(Particle Swarm Optimization,PSO)算法对MMPE的参数进行优化;其次,对采集到的齿轮振动信号计算其MMPE;最后,采用PSO-SVM对齿轮的故障状态进行了识别。试验结果验证了所提方法的有效性且具有较高的准确率。 展开更多
关键词 多尺度均值排列熵 粒子群优化算法 支持向量机 故障诊断 齿轮
下载PDF
基于MELMD-ICA的光纤振动信号降噪方法 被引量:1
6
作者 尚秋峰 黄达 《半导体光电》 CAS 北大核心 2023年第2期312-318,共7页
针对分布式光纤传感系统所采集含噪信号,提出一种改进集成局部均值分解(MELMD)联合独立成分分析(ICA)的降噪方法,引入排列熵判决机制提高抑制模态混叠与虚假分量能力。首先使用MELMD方法分解含噪信号得到乘积函数(PF)并进行信号重构;将... 针对分布式光纤传感系统所采集含噪信号,提出一种改进集成局部均值分解(MELMD)联合独立成分分析(ICA)的降噪方法,引入排列熵判决机制提高抑制模态混叠与虚假分量能力。首先使用MELMD方法分解含噪信号得到乘积函数(PF)并进行信号重构;将含噪信号和重构信号求差得到虚拟噪声,构造虚拟通道;然后使用ICA对含噪信号和虚拟通道进行信噪分离,得到最终结果。通过实验验证,该方法与EMD-ICA,EEMD-ICA,MELMD相比,能更好地消除信号中的噪声,保留信号的特征信息。 展开更多
关键词 分布式光纤传感 改进集成局部均值分解 排列熵 独立成分分析 降噪
下载PDF
基于LMD-WSVD的半球谐振陀螺混合去噪方法 被引量:1
7
作者 常龙康 魏健雄 +3 位作者 于飞 张国昌 高伟 郝强 《系统工程与电子技术》 EI CSCD 北大核心 2023年第2期497-503,共7页
为了减少半球谐振陀螺(hemispherical resonant gyroscope,HRG)输出噪声对导航精度的影响,提出了一种基于局部均值分解排列熵小波变换奇异值分解的混合去噪方法。首先,使用局部均值分解方法对HRG信号进行分解,然后排列熵将其划分为两类... 为了减少半球谐振陀螺(hemispherical resonant gyroscope,HRG)输出噪声对导航精度的影响,提出了一种基于局部均值分解排列熵小波变换奇异值分解的混合去噪方法。首先,使用局部均值分解方法对HRG信号进行分解,然后排列熵将其划分为两类:低频分量和混合分量;之后将小波变换和奇异值分解级联以构成两级滤波器,对混合分量进行降噪处理,最后重构得到最终的信号。通过实验验证了该方法的有效性,实验结果表明,相比原始信号,所提出的方法有效地减少了HRG的输出噪声,提高了其测量精度,其中角度随机游走降低了99.9%,零偏稳定性降低了60.3%。 展开更多
关键词 半球谐振陀螺 局部均值分解 排列熵 小波变换 奇异值分解
下载PDF
局部均值分解和排列熵在行星齿轮箱故障诊断中的应用 被引量:44
8
作者 丁闯 张兵志 +1 位作者 冯辅周 江鹏程 《振动与冲击》 EI CSCD 北大核心 2017年第17期55-60,共6页
目前行星齿轮箱已经在军用和民用装备中广泛应用,研究行星齿轮箱的故障诊断方法意义重大。针对行星齿轮箱在运行时产生的非线性非平稳振动,且故障特征信号微弱等问题,提出一种结合局部均值分解和排列熵的行星齿轮箱故障诊断方法。利用... 目前行星齿轮箱已经在军用和民用装备中广泛应用,研究行星齿轮箱的故障诊断方法意义重大。针对行星齿轮箱在运行时产生的非线性非平稳振动,且故障特征信号微弱等问题,提出一种结合局部均值分解和排列熵的行星齿轮箱故障诊断方法。利用局部均值分解方法将不同状态下的振动信号分解为多个乘积函数分量,针对包含有故障信息的分量进行排列熵计算,以此判断故障类型。最后通过采集行星齿轮箱故障模拟试验台三种状态(齿轮正常、太阳轮裂纹故障及行星轮裂纹故障)的振动信号,对其进行局部均值分解和排列熵计算,验证了此方法的有效性。 展开更多
关键词 行星齿轮箱 LMD 排列熵 故障诊断
下载PDF
基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究 被引量:31
9
作者 孙曙光 张强 +2 位作者 杜太行 王景芹 王岩 《中国电机工程学报》 EI CSCD 北大核心 2017年第18期5473-5482,共10页
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me... 目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。 展开更多
关键词 低压万能式断路器 局部均值分解(LMD) 改进多尺度排列熵(MMPE) 支持向量机(SVM) 多尺度排列熵偏 均值(PMMPE)故障程度评估
下载PDF
基于多尺度排列熵的液压泵故障识别 被引量:30
10
作者 王余奎 李洪儒 叶鹏 《中国机械工程》 EI CAS CSCD 北大核心 2015年第4期518-523,共6页
将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡... 将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡量振动信号复杂度的不足,在对多尺度排列熵进行研究的基础上提出了一种综合多尺度排列熵熵值和排列熵变化趋势的指标——多尺度排列熵偏均值,对液压泵实测信号的分析结果验证了该指标作为液压泵故障特征的有效性和优越性。 展开更多
关键词 多尺度排列熵 偏均值 液压泵 故障特征
下载PDF
基于排列组合熵和灰度特征的纹理分割 被引量:5
11
作者 钱诚 范影乐 庞全 《计算机应用》 CSCD 北大核心 2006年第3期586-588,共3页
提出了一种基于排列组合熵和灰度特征的纹理分割方法。该方法将不同方向上的排列组合熵与灰度均值、灰度方差结合起来构成一个多维特征向量,利用模糊C均值聚类算法进行聚类实现纹理图像的分割。实验结果表明该方法对纹理分布均匀的图像... 提出了一种基于排列组合熵和灰度特征的纹理分割方法。该方法将不同方向上的排列组合熵与灰度均值、灰度方差结合起来构成一个多维特征向量,利用模糊C均值聚类算法进行聚类实现纹理图像的分割。实验结果表明该方法对纹理分布均匀的图像有着良好的分割效果。在保持较高纹理分割精度的前提下,该方法能减小计算复杂度,并且具有较强的鲁棒性和抗噪声能力。 展开更多
关键词 纹理分割 排列组合熵 灰度特征 模糊C均值聚类
下载PDF
基于多尺度均值排列熵和参数优化支持向量机的轴承故障诊断 被引量:34
12
作者 王贡献 张淼 +2 位作者 胡志辉 向磊 赵博琨 《振动与冲击》 EI CSCD 北大核心 2022年第1期221-228,共8页
针对滚动轴承故障诊断中特征提取困难和模式识别准确率低等问题,提出了一种基于多尺度均值排列熵(MMPE)和灰狼优化支持向量机(GWO-SVM)结合的故障诊断方法。利用MMPE全面表征滚动轴承故障特征信息,选取适当维数特征构成样本数据集,采用G... 针对滚动轴承故障诊断中特征提取困难和模式识别准确率低等问题,提出了一种基于多尺度均值排列熵(MMPE)和灰狼优化支持向量机(GWO-SVM)结合的故障诊断方法。利用MMPE全面表征滚动轴承故障特征信息,选取适当维数特征构成样本数据集,采用GWO-SVM分类器进行故障模式识别。对所提基于MMPE和GWO-SVM故障诊断方法进行理论分析和研究,并利用滚动轴承试验数据进行相应对比试验分析,结果表明:MMPE能够有效提取滚动轴承故障特征信息;GWO-SVM识别准确率和识别速度优于滚动轴承故障诊断其它常用参数优化支持向量机;所提方法能够有效识别滚动轴承故障位置和故障程度,在滚动轴承数据集上取得了98.0%的故障识别准确率,高于基于MPE和GWO-SVM方法的97.0%准确率,并且在噪声背景下取得了93.5%的识别准确率,优于后者83.0%准确率,证明了所提MMPE具有更好的噪声鲁棒性。 展开更多
关键词 滚动轴承 故障诊断 多尺度均值排列熵 灰狼优化 支持向量机
下载PDF
基于模糊聚类算法的S700K型电动转辙机运行状态评估 被引量:6
13
作者 魏文军 李政 +1 位作者 武晓春 高利民 《铁道学报》 EI CAS CSCD 北大核心 2022年第4期74-81,共8页
为解决S700K型电动转辙机正常、亚健康、故障和严重故障等全周期运行状态难以评估的问题,考虑其动作功率曲线和状态信息的一致性,结合局部均值分解(LMD)和排列熵(PE)理论,提出基于模糊聚类分析的S700K型电动转辙机运行状态评估算法。首... 为解决S700K型电动转辙机正常、亚健康、故障和严重故障等全周期运行状态难以评估的问题,考虑其动作功率曲线和状态信息的一致性,结合局部均值分解(LMD)和排列熵(PE)理论,提出基于模糊聚类分析的S700K型电动转辙机运行状态评估算法。首先利用LMD分解将曲线分解成不同频率特性的乘积函数分量;其次结合PE算法量化不同分量复杂度,构建功率曲线的特征向量;最后用不同运行状态下的特征向量建立初始模糊矩阵,利用模糊聚类方法求得模糊相似矩阵和模糊等价矩阵。当置信因子从大到小变化时,由对应布尔矩阵得到动态聚类图,在置信因子取特定值时,测试集和样本集进行了匹配分类,从而实现了转辙机运行状态评估。实验结果表明,该算法模型具有结构简单、自适应和小样本的优势,更容易有效识别转辙机全周期运行状态。 展开更多
关键词 S700K型电动转辙机 运行状态评估 局部均值分解 排列熵 模糊聚类
下载PDF
改进局部均值分解的齿轮箱复合故障特征提取 被引量:4
14
作者 柴慧理 叶美桃 《机械传动》 北大核心 2019年第8期130-134,共5页
在强噪声环境下,针对局部均值分解(Local Mean Decomposition,LMD)出现的模态混叠现象,提出了总体局部均值分解方法(Ensemble Local Mean Decomposition,ELMD),但ELMD中所添加的白噪声不能完全被中和,这会导致PF分量受到所加白噪声的影... 在强噪声环境下,针对局部均值分解(Local Mean Decomposition,LMD)出现的模态混叠现象,提出了总体局部均值分解方法(Ensemble Local Mean Decomposition,ELMD),但ELMD中所添加的白噪声不能完全被中和,这会导致PF分量受到所加白噪声的影响,导致重构误差增大。因此,提出基于PE-CELMD(Permutation Entropy-Complementary Ensemble Local Mean Decomposition)的齿轮箱复合故障诊断方法,该思路是在ELMD的基础上通过添加成对白噪声再结合排列熵(PermutationEntropy,PE)的方法优化LMD。将该方法应用于仿真信号和实测信号,并通过与LMD、CELMD对比,结果表明,PE-CELMD方法是一种有效的复合故障特征提取方法。 展开更多
关键词 局部均值分解 排列熵 复合故障
下载PDF
基于多尺度排列熵的波纹管压浆超声检测 被引量:1
15
作者 郑豪 韩庆邦 +2 位作者 许洲琛 彭浩 王鹏 《声学技术》 CSCD 北大核心 2016年第6期531-536,共6页
将多尺度排列熵引入波纹管压浆质量检测中,对不同注浆密实程度的波纹管进行超声检测,对回波信号进行分析。为了检测信号在不同尺度下的动力学特征,提出了一种基于多尺度排列熵偏均值的波纹管压浆质量检测方法,利用有限元进行仿真,仿真... 将多尺度排列熵引入波纹管压浆质量检测中,对不同注浆密实程度的波纹管进行超声检测,对回波信号进行分析。为了检测信号在不同尺度下的动力学特征,提出了一种基于多尺度排列熵偏均值的波纹管压浆质量检测方法,利用有限元进行仿真,仿真结果表明,波纹管压浆质量越差,回波信号对应的排列熵偏均值越小。实际模型的处理结果表明该指标能够有效地判断波纹管压浆质量。 展开更多
关键词 多尺度排列熵 偏均值 波纹管
下载PDF
二次VMD筛选-MPE和FCM相结合的故障诊断方法 被引量:4
16
作者 周成江 吴建德 袁徐轶 《机械科学与技术》 CSCD 北大核心 2019年第8期1173-1184,共12页
针对单向阀振动信号含有背景噪声,故障特征提取困难和诊断精度不高的问题,提出了二次变分模态分解(二次VMD)、多尺度排列熵(MPE)和模糊C均值聚类(FCM)相结合的故障诊断方法。首先,通过二次VMD对振动信号进行分解,再使用双阈值法筛选得... 针对单向阀振动信号含有背景噪声,故障特征提取困难和诊断精度不高的问题,提出了二次变分模态分解(二次VMD)、多尺度排列熵(MPE)和模糊C均值聚类(FCM)相结合的故障诊断方法。首先,通过二次VMD对振动信号进行分解,再使用双阈值法筛选得到有用的本征模态函数(IMF)。其次,提取重构信号中具有敏感特性的MPE特征。最后,将故障特征输入至FCM得到聚类中心,并根据海明贴近度对待识别样本进行分类。通过多组对比实验,结果表明二次VMD筛选能有效去除噪声及虚假成分,MPE具有更好的敏感故障特征表征能力。同时,使用FCM对模糊特征进行聚类能够取得比传统支持向量机(SVM)更好的效果。 展开更多
关键词 二次变分模态分解 多尺度排列熵 双阈值法 单向阀 故障诊断
下载PDF
基于参数优化MPE与FCM的滚动轴承故障诊断 被引量:5
17
作者 陈东宁 张运东 +2 位作者 姚成玉 来博文 吕世君 《轴承》 北大核心 2017年第5期33-38,44,共7页
为精确提取滚动轴承振动信号的故障特征,提出了一种基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法。首先,针对多尺度排列熵算法的参数确定问题,综合考虑参数之间的交互影响,基于遗传算法与微粒群算法对参数进行优化;然后,利... 为精确提取滚动轴承振动信号的故障特征,提出了一种基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法。首先,针对多尺度排列熵算法的参数确定问题,综合考虑参数之间的交互影响,基于遗传算法与微粒群算法对参数进行优化;然后,利用参数优化多尺度排列熵对滚动轴承振动信号进行特征提取,并通过模糊C均值聚类确定标准聚类中心;最后,采用Euclid贴近度对故障样本进行分类。通过分类系数与平均模糊熵检验聚类效果,证明了多尺度排列熵参数优化的有效性;与单一尺度排列熵、样本熵结合模糊C均值聚类方法的对比分析表明,基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法具有更高的故障识别率和更广阔的适用范围。 展开更多
关键词 滚动轴承 故障诊断 参数优化 多尺度排列熵 遗传算法 微粒群算法 模糊C均值聚类
下载PDF
基于鲸鱼优化算法的VMD-NLM脉搏信号滤波算法研究 被引量:1
18
作者 杨海马 陈嘉慈 +3 位作者 徐笑寒 李福凤 宋智超 金焱 《上海理工大学学报》 CAS CSCD 北大核心 2022年第6期553-561,共9页
针对采集到的脉搏波信号中存在基线漂移和高频噪声等干扰,导致后续病理研究分析困难、测量精度相对较差的问题,提出了一种改进的变分模态分解和非局部均值降噪结合的滤波算法。针对变分模态参数选取不同对结果存在不同影响的问题,采取... 针对采集到的脉搏波信号中存在基线漂移和高频噪声等干扰,导致后续病理研究分析困难、测量精度相对较差的问题,提出了一种改进的变分模态分解和非局部均值降噪结合的滤波算法。针对变分模态参数选取不同对结果存在不同影响的问题,采取鲸鱼优化算法自适应选取合适的参数,并根据排列熵结果筛选模态分量,对噪声分量进行非局部均值滤波,最后将信号重构,实现对脉搏波信号的噪声去除。实验结果表明:含噪信号经过改善后的滤波算法处理后,其信噪比与均方根误差均优于其他降噪方法,证明该算法能够有效地滤除信号的噪声,有助于脉搏波的分析处理。 展开更多
关键词 脉搏信号 鲸鱼优化算法 变分模态分解 排列熵 非局部均值滤波
下载PDF
基于VMD_MPE和FCM聚类的变转速工况下转子不平衡故障诊断方法 被引量:5
19
作者 钟志贤 马李奕 +2 位作者 蔡忠侯 段一戬 陈金华 《振动与冲击》 EI CSCD 北大核心 2022年第14期290-298,共9页
旋转机械在变转速工况下转子不平衡故障诊断问题一直是故障诊断领域的难点,为解决该问题,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multiscale permutation entropy,MPE)和模糊C均值(fuzzy C means... 旋转机械在变转速工况下转子不平衡故障诊断问题一直是故障诊断领域的难点,为解决该问题,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multiscale permutation entropy,MPE)和模糊C均值(fuzzy C means,FCM)聚类结合的故障诊断方法(VMD_MPE-FCM)。首先,用VMD对转子的振动信号进行处理,得到若干本征模态分量(intrinsic mode function,IMF);然后,根据转子不平衡故障时一倍频(1×)处振幅剧烈增加的现象,从VMD得到的各IMF频谱图中筛选出最能表征转子不平衡故障特征的IMF;进而采用MPE法对筛选出的IMF进行量化;最后,将量化所得值作为特征向量输入FCM,得到各转速工况下的标准聚类中心,采用择近原则,运用模糊贴近算法计算出待识别数据与标准聚类中心的贴近度,从而实现变转速工况下转子不平衡的故障识别。在转子试验台上采用VMD_MPE-FCM法进行了变转速工况下转子不平衡故障诊断试验,试验结果表明:该方法是有效的,可以准确、高效地提取出转子故障特征,能够很好地识别出不同转速工况下转子的不平衡故障。 展开更多
关键词 变转速工况 转子不平衡故障 变分模态分解(VMD) 多尺度排列熵(MPE) 模糊C均值(FCM) 故障诊断
下载PDF
基于LMD排列熵和BP神经网络的行星齿轮箱故障诊断方法 被引量:10
20
作者 高素杰 巫世晶 +3 位作者 周建华 郑攀 陈奔 许家才 《机械传动》 北大核心 2022年第10期10-16,23,共8页
针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值... 针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。 展开更多
关键词 行星齿轮箱 故障诊断 局部均值分解 排列熵 BP神经网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部