期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Multi-scale simulation of diffusion behavior of deterrent in propellant 被引量:1
1
作者 Pan Huang Zekai Zhang +5 位作者 Yuxin Chen Changwei Liu Yong Zhang Cheng Lian Yajun Ding Honglai Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期29-35,共7页
Concentration distribution of the deterrent in single-base propellant during the process of firing plays an important role in the ballistic properties of gun propellant in weapons. However, the diffusion coefficient c... Concentration distribution of the deterrent in single-base propellant during the process of firing plays an important role in the ballistic properties of gun propellant in weapons. However, the diffusion coefficient calculated by molecular dynamics(MD) simulation is 6 orders of magnitude larger than the experimental values. Meanwhile, few simple and comprehensive theoretical models can explain the phenomenon and accurately predict the concentration distribution of the propellant. Herein, an onion model combining with MD simulation and finite element method of diffusion in propellants is introduced to bridge the gap between the experiments and simulations, and correctly predict the concentration distribution of deterrent. Furthermore, a new time scale is found to characterize the diffusion process. Finally, the time-and position-depended concentration distributions of dibutyl phthalate in nitrocellulose are measured by Raman spectroscopy to verify the correctness of the onion model. This work not only provides guidance for the design of the deterrent, but could be also extended to the diffusion of small molecules in polymer with different crystallinity. 展开更多
关键词 multi-scale simulation DIFFUSION DETERRENT PROPELLANT Onion model Molecular dynamics simulation
下载PDF
An Application of the RAMS/FLUENT System on the Multi-Scale Numerical Simulation of the Urban Surface Layer—A Preliminary Study 被引量:11
2
作者 李磊 胡非 +1 位作者 姜金华 程雪玲 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期271-280,共10页
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)... The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL. 展开更多
关键词 multi-scale numerical simulation urban surface layer (USL) urban canopy layer (UCL) RAMS/FLUENT system
下载PDF
Applying multi-scale simulations to materials research of nuclear fuels:A review 被引量:1
3
作者 Chunyang Wen Di Yun +3 位作者 Xinfu He Yong Xin Wenjie Li Zhipeng Sun 《Materials Reports(Energy)》 2021年第3期64-80,共17页
Computational simulation is an important technical means in research of nuclear fuel materials.Since nuclear fuel issues are inherently multi-scopic,it is imperative to study them with multi-scale simulation scheme.At... Computational simulation is an important technical means in research of nuclear fuel materials.Since nuclear fuel issues are inherently multi-scopic,it is imperative to study them with multi-scale simulation scheme.At present,the development of multi-scale simulation for nuclear fuel materials calls for a more systematic approach,in which lies the main purpose of this article.The most important thing in multi-scale simulation is to accurately formulate the goals to be achieved and the types of methods to be used.In this regard,we first summarize the basic principles and applicability of the simulation methods which are commonly used in nuclear fuel research and are based on different scales ranging from micro to macro,i.e.First-Principles(FP),Molecular Dynamics(MD),Kinetic Monte Carlo(KMC),Phase Field(PF),Rate Theory(RT),and Finite Element Method(FEM).And then we discuss the major material issues in this field,also ranging from micro-scale to macro-scale and covering both pellets and claddings,with emphasis on what simulation method would be most suitable for solving each of the issues.Finally,we give our prospective analysis and understanding about the feasible ways of multi-scale integration and relevant handicaps and challenges. 展开更多
关键词 Computational simulation Nuclear fuel multi-scale modeling Irradiation behavior
下载PDF
Multi-scale coupling simulation in directional solidification of superalloy based on cellular automaton-finite difference method
4
作者 Zhao Guo Jian-xin Zhou +3 位作者 Ya-jun Yin Dong-qiao Zhang Xiao-yuan Ji Xu Shen 《China Foundry》 SCIE 2017年第5期398-404,共7页
Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatib... Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatible. A three-dimensional cellular automaton model couplling both dendritic scale and grain scale is developed to simulate the microstructure evolution of the nickel-based single crystal superalloy DD406. Besides, a macro–mesoscopic/microscopic coupling solution algorithm is proposed to improve computational efficiency. The simulation results of dendrite growth and grain growth of the alloy are obtained and compared with the results given in previous reports. The results show that the primary dendritic arm spacing and secondary dendritic arm spacing of the dendritic growth are consistent with the theoretical and experimental results. The mesoscopic grain simulation can be used to obtain results similar to those of microscopic dendrites simulation. It is indicated that the developed model is feasible and effective. 展开更多
关键词 multi-scale coupling dendritic growth grain growth directional solidification cellular automata numerical simulation
下载PDF
A Multi-Scale Urban Atmospheric Dispersion Model for Emergency Management 被引量:4
5
作者 MIAO Yucong LIU Shuhua +3 位作者 ZHENG Hui ZHENG Yijia CHEN Bicheng WANG Shu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第6期1353-1365,共13页
To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion... To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs. 展开更多
关键词 WRF model OPENFOAM AEGLs multi-scale simulation
下载PDF
Numerical failure analysis of a continuous reinforced concrete bridge under strong earthquakes using multi-scale models 被引量:3
6
作者 Li Zhongxian Chen Yu Shi Yundong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期397-413,共17页
Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may ... Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers. 展开更多
关键词 numerical simulation erosion criterion multi-scale finite element (FE) model failure mechanism failuremode
下载PDF
Numerical simulation of avascular tumor growth based on p27 gene regulation 被引量:1
7
作者 Yu ZHOU Jia-wan CHEN +4 位作者 Xiao-ning DAI Yan CAI Wei YAO Shi-xiong XU Quan LONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期327-338,共12页
A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the dist... A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the distribution of the concentration of oxygen, the extracellular matrix (ECM), and the matrix-degradative enzyme (MDE). At the cellular level, the discrete Lagrangien model is adopted to determine the movement, the proliferation, and the death of single tumor cells (TCs). At the genetic level, whether a cell is committed to mitosis is determined by solving a set of equations modeling the effects of the p27 gene control. The avascular morphological evolution of the solid tumor growth is simulated, including the radius the oxygen distribution over time, and the expression. of the solid tumor, the number of the TCs, inhibiting effect' of the up-regulating p27 gene 展开更多
关键词 tumor growth AVASCULAR p27 gene multi-scale continuous-discrete model numerical simulation
下载PDF
Seismic energy dispersion compensation by multi-scale morphology
8
作者 Yu Junqing Wang Runqiu +5 位作者 Liu Taoran Zhang Zhenglong Wu Jian Jiang Yongyong Sun Lipeng Xia Pei 《Petroleum Science》 SCIE CAS CSCD 2014年第3期376-384,共9页
Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for mult... Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for multi-scale morphology and the spectrum simulation method. These methods are applied in seismic energy compensation. First of all, the seismic data is decomposed into multiple scales and the effective frequency bandwidth is selectively broadened for some scales by using a spectrum simulation method. In this process, according to the amplitude spectrum of each scale, the best simulation range is selected to simulate the middle and low frequency components to ensure the authenticity of the simulation curve which is calculated by the median method, and the high frequency component is broadened. Finally, these scales are reconstructed with reasonable coefficients, and the compensated seismic data can be obtained. Examples are shown to illustrate the feasibility of the energy compensation method. 展开更多
关键词 Seismic wave multi-scale morphology dispersion compensation high resolution median method spectrum simulation
下载PDF
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
9
作者 Vahid Sadeghian Oh-Sung Kwon Frank Vecchio 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期727-743,共17页
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange f... This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required. 展开更多
关键词 hybrid simulation small-scale testing reinforced concrete structures shear behaviour multi-scale modelling
下载PDF
Flow characteristics simulation of spiral coil reactor used in the thermochemical energy storage system
10
作者 Xiaoyi Chen Danyang Song +3 位作者 Dong Zhang Xiaogang Jin Xiang Ling Dongren Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期364-379,共16页
According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat sto... According to environmental and energy issues,renewable energy has been vigorously promoted.Now solar power is widely used in many areas but it is limited by the weather conditions and cannot work continuously.Heat storage is a considerable solution for this problem and thermochemical energy storage is the most promising way because of its great energy density and stability.However,this technology is not mature enough to be applied to the industry.The reactor is an important component in the thermochemical energy storage system where the charging and discharging process happens.In this paper,a spiral coil is proposed and used as a reactor in the thermochemical energy storage system.The advantages of the spiral coil include simple structure,small volume,and so on.To investigate the flow characteristics,the simulation was carried out based on energy-minimization multi-scale model(EMMS)and Eulerian two-phase model.CaCO_(3) particles were chosen as the reactants.Particle distribution was shown in the results.The gas initial velocity was set to 2 m·s^(-1),3 m·s^(-1),and 4 m·s^(-1).When the particles flowed in the coil,gravity,centrifugal force and drag force influenced their flow.With the Reynold numbers increasing,centrifugal and drag force got larger.Accumulation phenomenon existed in the coil and results showed with the gas velocity increasing,accumulation moved from the bottom to the outer wall of the coil.Besides,the accumulation phenomenon was stabilized whenφ>720°.Also due to the centrifugal force,a secondary flow formed,which means solid particles moved from the inside wall to the outside wall.This secondary flow could promote turbulence and mixing of particles and gas.In addition,when the particle volume fraction is reduced from 0.2 to 0.1,the accumulation at the bottom of the coil decreases,and the unevenness of the velocity distribution becomes larger. 展开更多
关键词 Thermochemical energy storage CaCO3/CaO Reactors simulation Two-phase flow Energy-minimization multi-scale model(EMMS)
下载PDF
Research on Multi-Scale Modeling of Grid-Connected Distributed Photovoltaic Power Generation
11
作者 Chen Lv Wanxing Sheng +1 位作者 Keyan Liu Xinzhou Dong 《Energy and Power Engineering》 2017年第4期127-140,共14页
The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key... The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network. 展开更多
关键词 PV DISTRIBUTED Generation multi-scale Modeling simulation STEP Size OUTPUT Power VOLTAGE Profile
下载PDF
Simulation and Analysis of PMSG-based Wind Energy Conversion System using Different Coverter Models
12
作者 Hua Ye Juan Su Songhuai Du 《Engineering(科研)》 2013年第1期96-100,共5页
Modeling of a permanent magnet synchronous generator (PMSG)-based wind energy conversion system is presented for the simulation of diverse transients. In order to perform multi-scale transients, the back-to-back volta... Modeling of a permanent magnet synchronous generator (PMSG)-based wind energy conversion system is presented for the simulation of diverse transients. In order to perform multi-scale transients, the back-to-back voltage source converter (VSC) is modeled using three different forms including the detailed, switched and average models. The PMSG-based WECS is implemented in PSCAD/EMTDC. The simulation results show that the detailed and switched model of VSC give a detailed and accurate representation, while the average model provides an efficient simulation. 展开更多
关键词 POWER system simulation PMSG WIND POWER generation VOLTAGE source CONVERTER multi-scale transients
下载PDF
Catalytic ozonation in advanced treatment of kitchen wastewater:multi-scale simulation and pilot-scale study
13
作者 Zuoyong Zhou Ni Yan +6 位作者 Mengxi Yin Tengfei Ren Shuning Chen Kechao Lu Xiaoxin Cao Xia Huang Xiaoyuan Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第12期47-58,共12页
Catalytic ozonation is regarded as a promising technology in the advanced treatment of refractory organic wastewater.Packed-bed reactors are widely used in practical applications due to simple structures,installation ... Catalytic ozonation is regarded as a promising technology in the advanced treatment of refractory organic wastewater.Packed-bed reactors are widely used in practical applications due to simple structures,installation and operation.However,mass transfer of packed-bed reactors is relatively restrained and amplified deviations usually occurred in scale-up application.Herein,a multi-scale packed-bed model of catalytic ozonation was established to guide pilot tests.First,a laboratory-scale test was conducted to obtain kinetic parameters needed for modeling.Then,a multi-scale packed-bed model was developed to research the effects of water distribution structure,catalyst particle size,and hydraulic retention time(HRT)on catalytic ozonation.It was found that the performance of packed bed reactor was increased with evenly distributed water inlet,HRT of 60 min,and catalyst diameter of about 3-7 mm.Last,an optimized reactor was manufactured and a pilot-scale test was conducted to treat kitchen wastewater using catalytic ozonation process.In the pilot-scale test with an ozone dosage of 50 mg/L and HRT of 60 min,the packed-bed reactor filled with catalysts I was able to reduce chemical oxygen demand(COD)from 117 to 59 mg/L.The performance of the catalytic ozonation process in the packed-bed reactor for the advanced treatment of actual kitchen wastewater was investigated via both multi-scale simulation and pilot-scale tests in this study,which provided a practical method for optimizing the reactors of treating refractory organic wastewater. 展开更多
关键词 Catalytic ozonation multi-scale simulation Pilot-scale study Kitchen wastewater
原文传递
Multi-scale simulation model of air system based on cross-dimensional data transmission method
14
作者 Lei WANG Junkui MAO +2 位作者 Song WEI Longfei WANG Jin PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期157-174,共18页
The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the c... The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the calculation accuracy.In this paper,a Cross-dimensional Data Transmission method(CDT)from 3D to 1D is proposed by introducing flow field uniformity into the data transmission.First,a uniformity index was established to quantify the flow field parameter distribution characteristics,and a uniformity index prediction model based on the locally weighted regression method(Lowess)was established to quickly obtain the flow field information.Then,an information selection criterion in 3D to 1D data transmission was established based on the Spearman rank correlation coefficient between the uniformity index and the accuracy of coupling calculation,and the calculation method was automatically determined according to the established criterion.Finally,a modified function was obtained by fitting the ratio of the 3D mass-average parameters to the analytical solution,which are then used to modify the selected parameters at the 1D-3D interface.Taking a typical disk cavity air system as an example,the results show that the calculation accuracy of the CDT method is greatly improved by a relative 53.88%compared with the traditional 1D-3D coupling method.Furthermore,the CDT method achieves a speedup of 2 to 3 orders of magnitude compared to the 3D calculation. 展开更多
关键词 Air system Data transmission Disk cavity multi-scale simulation 1D-3D coupling
原文传递
下穿铁路框架桥的基坑设计及安全分析
15
作者 苏昶 《山西建筑》 2024年第7期89-93,共5页
基坑在工程建设中较为常见,基坑开挖安全分析在每一个特定工程中都具有其重要意义,以杭州市萧山区彩虹快速路下穿沪昆铁路的建设工程为研究对象,介绍了下穿铁路线的框架桥及其深基坑的设计、施工方案,并基于现场监控和数值模拟的手段分... 基坑在工程建设中较为常见,基坑开挖安全分析在每一个特定工程中都具有其重要意义,以杭州市萧山区彩虹快速路下穿沪昆铁路的建设工程为研究对象,介绍了下穿铁路线的框架桥及其深基坑的设计、施工方案,并基于现场监控和数值模拟的手段分析了基坑施工过程中围护结构的变形情况及周边地表的沉降情况。结果表明,相较于预制框架顶进施工法,明挖基坑现浇框架法更易保证其施工安全性,且对既有铁路线的运营影响更小;该基坑施工过程中,围护结构最大水平变形22 mm、最大沉降3.0 mm,立柱桩最大沉降15 mm,基坑结构具有很好的安全稳定性;然而,基坑周边地表沉降最大可达18 mm,且影响范围处于距离基坑边缘2 m~25 m范围内,应尤其注意该距离范围内既有铁路线的维护与检修,并适当降低铁路运营速度。 展开更多
关键词 框架桥 深基坑 地表沉降 围护结构变形 现场监控 数值模拟 安全评估
下载PDF
Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy 被引量:3
16
作者 W.L.Wang W.Q.Liu +2 位作者 X.Yang R.R.Xu Q.Y.Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期11-24,共14页
A model of coupling macro finite volume method(FVM) and cellular automata(CA) is proposed in this paper to explore the columnar-to-equiaxed transition(CET) during selective laser melting(SLM) of rare earth magnesium a... A model of coupling macro finite volume method(FVM) and cellular automata(CA) is proposed in this paper to explore the columnar-to-equiaxed transition(CET) during selective laser melting(SLM) of rare earth magnesium alloy.Taking into account the impact of recoil pressure and Marangoni convection on the molten pool temperature field,the grain structure is simulated.As suggested by the simulation results,with the undissolved Zr serving as heterogeneous nucleation sites,the liquid undercooled layer under the combined action of forced cooling,the temperature gradient and the liquid solute concentration gradient leads to CET.While considering the dissolution of Zr in magnesium matrix,the results demonstrate that the dissolution of element Zr is effective in significantly inhibiting the growth of columnar crystals and ensuring the sufficient constitutional supercooling(CS) required for nucleation.In addition,to raise the preheating temperature contributes to enhancing the outcome of nucleation and incresing the grain size.Invoking the interdependence model(IM),with the cooling rate gradually increasing in the SLM process of magnesium alloy,the nucleation-free zone(NFZ) reduces by decreasing the solute diffusion layer in the front of the solid/liquid(SL) interface and the temperature gradient.The reduction in temperature gradient can promote undercooling for nucleation and facilitate the development of equiaxed crystals.The simulation results are qualitatively verified as highly consistent through experimentation. 展开更多
关键词 multi-scale simulation Columnar-to-equiaxed transition Selective laser melting Rare earth magnesium alloy Constitutional supercooling
原文传递
Multi-Scale Numerical Simulation of Flow,Heat and Mass Transfer Behaviors in Dense Gas-Solid Flows:A Brief Review
17
作者 HE Yurong REN Anxing +1 位作者 TANG Tianqi WANG Tianyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第3期607-633,共27页
Dense gas-solid flows are very common in actual production and industrial fields,so it is significant to understand their hydrodynamic characteristics and heat and mass transfer behaviors.This article provides a brief... Dense gas-solid flows are very common in actual production and industrial fields,so it is significant to understand their hydrodynamic characteristics and heat and mass transfer behaviors.This article provides a brief review of multi-scale numerical simulation of flow,heat and mass transfer behaviors in dense gas-solid flows.It describes multiscale models(direct numerical simulation,discrete particle model,and two-fluid model)and the results of related research.Finally,it discusses possible future developments in research on the flow,heat and mass transfer characteristics of dense gas-solid two-phase flows. 展开更多
关键词 gas-solid flows multi-scale modeling direct numerical simulation discrete particle model two-fluid model heat and mass transfer
原文传递
Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system 被引量:1
18
作者 Wende Tian Jiawei Zhang +2 位作者 Zhe Cui Haoran Zhang Bin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期291-305,共15页
Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material f... Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources. 展开更多
关键词 Biomass chemical looping gasification Reactive force field molecular dynamics simulation SEPARATION multi-scale simulation
下载PDF
Molecular Simulations in Macromolecular Science 被引量:1
19
作者 Duo Xu Hai-Xiao Wan +2 位作者 Xue-Rong Yao Juan Li Li-Tang Yan 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第9期1361-1370,I0005,共11页
Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand th... Molecular simulations are now an essential part of modern chemistry and physics,especially for the investigation of macromolecules.They have evolved into mature approaches that can be used effectively to understand the structure-to-property relationships of diverse macromolecular systems.In this article,we provide a tutorial on molecular simulations,focusing on the technical and practical aspects.Several prominent and classical simulation methods and software are introduced.The applications of molecular simulations in various directions of macromolecular science are thenfeatured by representative systems,including self-assembly,crystallization,chemical reaction,and some typical non-equilibrium systems.This tutorial paper provides a useful overview of molecular simulations in the rapid progress of macromolecular science,and suggests guidance for researchers who start exploiting molecular simulations in their study. 展开更多
关键词 Molecular simulation Coarse-grained molecular dynamics multi-scale method Polymer physics
原文传递
特低渗透油藏油井压裂裂缝参数优化 被引量:17
20
作者 苏玉亮 慕立俊 +2 位作者 范文敏 李志文 高丽 《石油钻探技术》 CAS 北大核心 2011年第6期69-72,共4页
油井压裂开发是目前提高特低渗透油藏开发效果的有效手段。为了充分发挥水力裂缝的作用,裂缝参数必须设计得合理。以某特低渗透油藏为例,采用矩形网格剖分与PEBI网格剖分相结合的方法模拟水力裂缝,在300m反九点井网条件下,运用油藏数值... 油井压裂开发是目前提高特低渗透油藏开发效果的有效手段。为了充分发挥水力裂缝的作用,裂缝参数必须设计得合理。以某特低渗透油藏为例,采用矩形网格剖分与PEBI网格剖分相结合的方法模拟水力裂缝,在300m反九点井网条件下,运用油藏数值模拟方法对裂缝方位、导流能力及裂缝穿透比进行了优化,并采用正交试验法分析了裂缝参数对特低渗透油藏开发动态的影响规律。结果表明:压裂裂缝方位应考虑井网形式与最大主应力方向;裂缝的导流能力和穿透比不是越大越好,而是存在一个最佳值;在文中特低渗透油藏条件下,裂缝方位是影响采出程度的主要参数,其余依次为裂缝的导流能力和穿透比;裂缝导流能力是影响含水率的主要参数,其余依次为裂缝的方位和穿透比。 展开更多
关键词 低渗透油气藏 压裂 裂缝方位 裂缝导流能力 数值模拟
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部