Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)...Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks.展开更多
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi...Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction.展开更多
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i...In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.展开更多
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec...To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices.展开更多
Referring expressions comprehension is the task of locating the image region described by a natural language expression,which refer to the properties of the region or the relationships with other regions.Most previous...Referring expressions comprehension is the task of locating the image region described by a natural language expression,which refer to the properties of the region or the relationships with other regions.Most previous work handles this problem by selecting the most relevant regions from a set of candidate regions,when there are many candidate regions in the set these methods are inefficient.Inspired by recent success of image captioning by using deep learning methods,in this paper we proposed a framework to understand the referring expressions by multiple steps of reasoning.We present a model for referring expressions comprehension by selecting the most relevant region directly from the image.The core of our model is a recurrent attention network which can be seen as an extension of Memory Network.The proposed model capable of improving the results by multiple computational hops.We evaluate the proposed model on two referring expression datasets:Visual Genome and Flickr30k Entities.The experimental results demonstrate that the proposed model outperform previous state-of-the-art methods both in accuracy and efficiency.We also conduct an ablation experiment to show that the performance of the model is not getting better with the increase of the attention layers.展开更多
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ...Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction.展开更多
Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,...Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.61906006).
文摘Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks.
基金Supported by the National Natural Science Foundation of China(61903336,61976190)the Natural Science Foundation of Zhejiang Province(LY21F030015)。
文摘Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction.
基金the Scientific Research Foundation of Liaoning Provincial Department of Education(No.LJKZ0139)the Program for Liaoning Excellent Talents in University(No.LR15045).
文摘In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.
基金funded by the Science and Technology Development Program of Jilin Province(20190301024NY)the Precision Agriculture and Big Data Engineering Research Center of Jilin Province(2020C005).
文摘To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices.
基金This work was supported in part by audio-visual new media laboratory operation and maintenance of Academy of Broadcasting Science,Grant No.200304in part by the National Key Research and Development Program of China(Grant No.2019YFB1406201).
文摘Referring expressions comprehension is the task of locating the image region described by a natural language expression,which refer to the properties of the region or the relationships with other regions.Most previous work handles this problem by selecting the most relevant regions from a set of candidate regions,when there are many candidate regions in the set these methods are inefficient.Inspired by recent success of image captioning by using deep learning methods,in this paper we proposed a framework to understand the referring expressions by multiple steps of reasoning.We present a model for referring expressions comprehension by selecting the most relevant region directly from the image.The core of our model is a recurrent attention network which can be seen as an extension of Memory Network.The proposed model capable of improving the results by multiple computational hops.We evaluate the proposed model on two referring expression datasets:Visual Genome and Flickr30k Entities.The experimental results demonstrate that the proposed model outperform previous state-of-the-art methods both in accuracy and efficiency.We also conduct an ablation experiment to show that the performance of the model is not getting better with the increase of the attention layers.
基金supported by the National Natural Science Foundation of China(61571453,61806218).
文摘Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction.
基金the National Natural Science Foundation of China(No.62276210,82201148,61775180)the Natural Science Basic Research Program of Shaanxi Province(No.2022JM-380)+3 种基金the Shaanxi Province College Students'Innovation and Entrepreneurship Training Program(No.S202311664128X)the Natural Science Foundation of Zhejiang Province(No.LQ22H120002)the Medical Health Science and Technology Project of Zhejiang Province(No.2022RC069,2023KY1140)the Natural Science Foundation of Ningbo(No.2023J390)。
文摘Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis.