The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S...Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.展开更多
This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify...This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.展开更多
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
Mining is the foundation of modern industrial development.In the context of the“carbon peaking and carbon neutrality”era,countries have put forward the development strategy of“adhering to the harmonious coexistence...Mining is the foundation of modern industrial development.In the context of the“carbon peaking and carbon neutrality”era,countries have put forward the development strategy of“adhering to the harmonious coexistence of humans and nature.”The ongoing progress and improvement of filling mining technology have provided significant advantages,such as“green mining,safe,efficient,and low-carbon emission,”which is crucial to the comprehensive utilization of mining solid waste,environmental protection,and safety of re-mining.This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage.The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented,and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed.The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels:static mechanics,dynamic mechanics,mechanical influencing factors,and multi-scale mechanics.The working/rheological characteristics of the filling slurry are presented,given the importance of the filling materials conveying process.Finally,the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.展开更多
The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cut...The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.展开更多
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr...A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.展开更多
The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are...The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences.展开更多
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
The contamination of heavy metal(loid)s at mining&metallurgical sites has been a major environmental challenge worldwide[1].Typically,large amounts of metal(loid)s-bearing wastes are generated at these sites,such ...The contamination of heavy metal(loid)s at mining&metallurgical sites has been a major environmental challenge worldwide[1].Typically,large amounts of metal(loid)s-bearing wastes are generated at these sites,such as smelting slag,combustion residues,mine tailings,wastewater,and exhaust gas[2].Due to their high mobility in the environment,the released heavy metal(loid)s can easily enter the soil and water environment,posing long-term and widespread threats to ecological and human health[3].展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
Measles,an infectious disease caused by the measles virus,remains a significant public health concern worldwide due to its highly contagious nature and potential for severe complications[1].In addition to symptoms suc...Measles,an infectious disease caused by the measles virus,remains a significant public health concern worldwide due to its highly contagious nature and potential for severe complications[1].In addition to symptoms such as high fever,cough,Koplik spots,and rash,measles can lead to serious complications including pneumonia and myocarditis,particularly in vulnerable populations such as young children[1,2].展开更多
Deep-sea mining activities can potentially release metals,which pose a toxicological threat to deep-sea ecosystems.Nevertheless,due to the remoteness and inaccessibility of the deep-sea biosphere,there is insufficient...Deep-sea mining activities can potentially release metals,which pose a toxicological threat to deep-sea ecosystems.Nevertheless,due to the remoteness and inaccessibility of the deep-sea biosphere,there is insufficient knowledge about the impact of metal exposure on its inhabitants.In this study,deep-sea mussel Gigantidas platifrons,a commonly used deep-sea toxicology model organism,was exposed to manganese(100,1000μg/L)or iron(500,5000μg/L)for 7 d,respectively.Manganese and iron were chosen for their high levels of occurrence within deep-sea deposits.Metal accumulation and a battery of biochemical biomarkers related to antioxidative stress in superoxide dismutase(SOD),catalase(CAT),malondialdehyde(MDA);immune function in alkaline phosphatase(AKP),acid phosphatase(ACP);and energy metabolism in pyruvate kinase(PK)and hexokinase(HK)were assessed in mussel gills.Results showed that deep-sea mussel G.platifrons exhibited a high capacity to accumulate Mn/Fe.In addition,most tested biochemical parameters were altered by metal exposure,demonstrating that metals could induce oxidative stress,suppress the immune system,and affect energy metabolism of deep-sea mussels.The integrated biomarker response(IBR)approach indicated that the exposure to Mn/Fe had a negative impact on deep-sea mussels,and Mn demonstrated a more harmful impact on deep-sea mussels than Fe.Additionally,SOD and CAT biomarkers had the greatest impact on IBR values in Mn treatments,while ACP and HK were most influential for the low-and high-dose Fe groups,respectively.This study represents the first application of the IBR approach to evaluate the toxicity of metals on deep-sea fauna and serves as a crucial framework for risk assessment of deep-sea mining-associated metal exposure.展开更多
The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu...The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.展开更多
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform...Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.展开更多
Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the estab...Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the establishment of plant species which is challenging.This study evaluated mineral and organic fertilization on the growth,and carbon and nitrogen(N)metabolism of two Crotalaria species[Cro-talaria spectabilis(exotic species)and Crotalaria maypu-rensis(native species from Carajás Mineral Province(CMP)]established on a waste pile from an iron mine in CMP.A control(without fertilizer application)and six fertilization mixtures were tested(i=NPK;ii=NPK+micronutrients;iii=NPK+micronutrients+organic compost;iv=PK;v=PK+micronutrients;vi=PK+micronutrients+organic compost).Fertilization contributed to increased growth of both species,and treatments with NPK and micronutrients had the best results(up to 257%cf.controls),while organic fertilization did not show differences.Exotic Crotalaria had a greater number of nodules,higher nodule dry mass,chlorophyll a and b contents and showed free ammonium as the predominant N form,reflecting greater increments in biomass compared to native species.Although having lower growth,the use of this native species in the rehabilitation of mining areas should be considered,mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity.展开更多
Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for...Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.展开更多
Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-te...Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-term effects on economy,environment,and society.This study collected soil samples from 16 sample points including a control point to examine the pollution degrees and spatial distribution of heavy metals,as well as ecological and health risks associated with heavy metal pollution in the Ijero-Ekiti mining site,Nigeria.Geographical Information System(GIS)and remote sensing technologies were used to identify regions with high concentrations of heavy metals and assess the environmental impact of gold mining activities.The results show that the mean heavy metal concentrations of 16 soil pointa are 8.94(±5.97)mg/kg for As,0.18(±0.54)mg/kg for Cd,0.11(±1.06)mg/kg for Co,14.32(±3.43)mg/kg for Cr,6.89(±0.64)mg/kg for Cu,48.92(±11.77)mg/kg for Fe,135.81(±30.75)mg/kg for Mn,5.92(±0.96)mg/kg for Ni,5.72(±1.66)mg/kg for Pb,and 13.94(±1.38)mg/kg for Zn.The study reveals that heavy metal concentration in soils follows the order of Mn>Fe>Cr>Zn>As>Cu>Ni>Pb>Co>Cd.An analysis of soil samples indicates that 3 principal components(PCs)account for 70.008%of the total variance and there are strong positive correlations between various pairs of heavy metals.The total potential ecological risk index(309.599)in the study area is high.Non-carcinogenic risk suggests that there may be long-term health impacts on people who work in the mining areas due to chronic exposure to the environment.Based on the study,the hazard index of carcinogenic health risks associated with heavy metals through ingestion is 520.00×10^(–4).Dermal contact from As and Cr also increases the risk of cancer,with the highest hazard index value of 18.40×10^(–4).The lowest exposure pathway,with the hazard index value of 0.68×10^(–4),indicates that the inhalation of heavy metals has a comparatively low risk of cancer.This study recommends the formulation of policies to monitor the Ijero-Ekiti mining site and other regions in Nigeria where indiscriminate artisanal gold mining activities exist.展开更多
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060201)the National Natural Science Foundation of China(Grant No.42067046)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10).
文摘Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.
文摘This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
基金financially supported by the China Postdoctoral Science Foundation (No.2022M711432)the Shanxi Basic Research Program Youth Project,China (No.202103021223114)Taiyuan University of Technology’s School Fund,China (No.2022QN070)。
文摘Mining is the foundation of modern industrial development.In the context of the“carbon peaking and carbon neutrality”era,countries have put forward the development strategy of“adhering to the harmonious coexistence of humans and nature.”The ongoing progress and improvement of filling mining technology have provided significant advantages,such as“green mining,safe,efficient,and low-carbon emission,”which is crucial to the comprehensive utilization of mining solid waste,environmental protection,and safety of re-mining.This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage.The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented,and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed.The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels:static mechanics,dynamic mechanics,mechanical influencing factors,and multi-scale mechanics.The working/rheological characteristics of the filling slurry are presented,given the importance of the filling materials conveying process.Finally,the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.
基金funded by State Key Laboratory of Strata Intelligent Control and Green Mining Cofounded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(Grant No.MDPC2023ZR01)Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.WPUKFJJ2019-19)Major research project of Guizhou Provincial Department of Education on innovative groups(Grant No.Qianjiaohe KY[2019]070)。
文摘A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.
文摘The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences.
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金the financial support by the National Key Research and Development Program of China and the Natural Science Foundation of Hunan Province (2019YFC18 03600, 2019YFC1803500, 2019YFC1805200, 2020YFC1807700, 2020YFC1808300, 2021YFC29 02600, 2022YFC2904400, 2023YFC3707700, 2024JJ1012)
文摘The contamination of heavy metal(loid)s at mining&metallurgical sites has been a major environmental challenge worldwide[1].Typically,large amounts of metal(loid)s-bearing wastes are generated at these sites,such as smelting slag,combustion residues,mine tailings,wastewater,and exhaust gas[2].Due to their high mobility in the environment,the released heavy metal(loid)s can easily enter the soil and water environment,posing long-term and widespread threats to ecological and human health[3].
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
文摘Measles,an infectious disease caused by the measles virus,remains a significant public health concern worldwide due to its highly contagious nature and potential for severe complications[1].In addition to symptoms such as high fever,cough,Koplik spots,and rash,measles can lead to serious complications including pneumonia and myocarditis,particularly in vulnerable populations such as young children[1,2].
基金Supported by the Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center(No.2022QNLM030004-1)the National Natural Science Foundation of China(Nos.42276153,42030407)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020401)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-DQC032)the National Key R&D Program of China(No.2022YFC2804003)。
文摘Deep-sea mining activities can potentially release metals,which pose a toxicological threat to deep-sea ecosystems.Nevertheless,due to the remoteness and inaccessibility of the deep-sea biosphere,there is insufficient knowledge about the impact of metal exposure on its inhabitants.In this study,deep-sea mussel Gigantidas platifrons,a commonly used deep-sea toxicology model organism,was exposed to manganese(100,1000μg/L)or iron(500,5000μg/L)for 7 d,respectively.Manganese and iron were chosen for their high levels of occurrence within deep-sea deposits.Metal accumulation and a battery of biochemical biomarkers related to antioxidative stress in superoxide dismutase(SOD),catalase(CAT),malondialdehyde(MDA);immune function in alkaline phosphatase(AKP),acid phosphatase(ACP);and energy metabolism in pyruvate kinase(PK)and hexokinase(HK)were assessed in mussel gills.Results showed that deep-sea mussel G.platifrons exhibited a high capacity to accumulate Mn/Fe.In addition,most tested biochemical parameters were altered by metal exposure,demonstrating that metals could induce oxidative stress,suppress the immune system,and affect energy metabolism of deep-sea mussels.The integrated biomarker response(IBR)approach indicated that the exposure to Mn/Fe had a negative impact on deep-sea mussels,and Mn demonstrated a more harmful impact on deep-sea mussels than Fe.Additionally,SOD and CAT biomarkers had the greatest impact on IBR values in Mn treatments,while ACP and HK were most influential for the low-and high-dose Fe groups,respectively.This study represents the first application of the IBR approach to evaluate the toxicity of metals on deep-sea fauna and serves as a crucial framework for risk assessment of deep-sea mining-associated metal exposure.
文摘The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.
基金This work was supported by the National Natural Science Foundation of China(62073155,62002137,62106088,62206113)the High-End Foreign Expert Recruitment Plan(G2023144007L)the Fundamental Research Funds for the Central Universities(JUSRP221028).
文摘Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
基金This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)the Instituto Tecnológico Vale(ITV),Fundação de Desenvolvimento da Pesquisa(FUNDEP)Fundação de Amparo e Desenvolvimento da Pesquisa(FADESP).
文摘Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the establishment of plant species which is challenging.This study evaluated mineral and organic fertilization on the growth,and carbon and nitrogen(N)metabolism of two Crotalaria species[Cro-talaria spectabilis(exotic species)and Crotalaria maypu-rensis(native species from Carajás Mineral Province(CMP)]established on a waste pile from an iron mine in CMP.A control(without fertilizer application)and six fertilization mixtures were tested(i=NPK;ii=NPK+micronutrients;iii=NPK+micronutrients+organic compost;iv=PK;v=PK+micronutrients;vi=PK+micronutrients+organic compost).Fertilization contributed to increased growth of both species,and treatments with NPK and micronutrients had the best results(up to 257%cf.controls),while organic fertilization did not show differences.Exotic Crotalaria had a greater number of nodules,higher nodule dry mass,chlorophyll a and b contents and showed free ammonium as the predominant N form,reflecting greater increments in biomass compared to native species.Although having lower growth,the use of this native species in the rehabilitation of mining areas should be considered,mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.520LH052)the National Natural Science Foundation of China(Grant No.51909164).
文摘Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.
文摘Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-term effects on economy,environment,and society.This study collected soil samples from 16 sample points including a control point to examine the pollution degrees and spatial distribution of heavy metals,as well as ecological and health risks associated with heavy metal pollution in the Ijero-Ekiti mining site,Nigeria.Geographical Information System(GIS)and remote sensing technologies were used to identify regions with high concentrations of heavy metals and assess the environmental impact of gold mining activities.The results show that the mean heavy metal concentrations of 16 soil pointa are 8.94(±5.97)mg/kg for As,0.18(±0.54)mg/kg for Cd,0.11(±1.06)mg/kg for Co,14.32(±3.43)mg/kg for Cr,6.89(±0.64)mg/kg for Cu,48.92(±11.77)mg/kg for Fe,135.81(±30.75)mg/kg for Mn,5.92(±0.96)mg/kg for Ni,5.72(±1.66)mg/kg for Pb,and 13.94(±1.38)mg/kg for Zn.The study reveals that heavy metal concentration in soils follows the order of Mn>Fe>Cr>Zn>As>Cu>Ni>Pb>Co>Cd.An analysis of soil samples indicates that 3 principal components(PCs)account for 70.008%of the total variance and there are strong positive correlations between various pairs of heavy metals.The total potential ecological risk index(309.599)in the study area is high.Non-carcinogenic risk suggests that there may be long-term health impacts on people who work in the mining areas due to chronic exposure to the environment.Based on the study,the hazard index of carcinogenic health risks associated with heavy metals through ingestion is 520.00×10^(–4).Dermal contact from As and Cr also increases the risk of cancer,with the highest hazard index value of 18.40×10^(–4).The lowest exposure pathway,with the hazard index value of 0.68×10^(–4),indicates that the inhalation of heavy metals has a comparatively low risk of cancer.This study recommends the formulation of policies to monitor the Ijero-Ekiti mining site and other regions in Nigeria where indiscriminate artisanal gold mining activities exist.