One of the issues in Computer Vision is the automatic development of descriptions for images,sometimes known as image captioning.Deep Learning techniques have made significant progress in this area.The typical archite...One of the issues in Computer Vision is the automatic development of descriptions for images,sometimes known as image captioning.Deep Learning techniques have made significant progress in this area.The typical architecture of image captioning systems consists mainly of an image feature extractor subsystem followed by a caption generation lingual subsystem.This paper aims to find optimized models for these two subsystems.For the image feature extraction subsystem,the research tested eight different concatenations of pairs of vision models to get among them the most expressive extracted feature vector of the image.For the caption generation lingual subsystem,this paper tested three different pre-trained language embedding models:Glove(Global Vectors for Word Representation),BERT(Bidirectional Encoder Representations from Transformers),and TaCL(Token-aware Contrastive Learning),to select from them the most accurate pre-trained language embedding model.Our experiments showed that building an image captioning system that uses a concatenation of the two Transformer based models SWIN(Shiftedwindow)and PVT(PyramidVision Transformer)as an image feature extractor,combined with the TaCL language embedding model is the best result among the other combinations.展开更多
Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,p...Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification.展开更多
One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse ...One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse of dimensionality, a problem which plagues NLP in general given that the feature set for learning starts as a function of the size of the language in question, upwards of hundreds of thousands of terms typically. As such, much of the research and development in NLP in the last two decades has been in finding and optimizing solutions to this problem, to feature selection in NLP effectively. This paper looks at the development of these various techniques, leveraging a variety of statistical methods which rest on linguistic theories that were advanced in the middle of the last century, namely the distributional hypothesis which suggests that words that are found in similar contexts generally have similar meanings. In this survey paper we look at the development of some of the most popular of these techniques from a mathematical as well as data structure perspective, from Latent Semantic Analysis to Vector Space Models to their more modern variants which are typically referred to as word embeddings. In this review of algoriths such as Word2Vec, GloVe, ELMo and BERT, we explore the idea of semantic spaces more generally beyond applicability to NLP.展开更多
Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent e...Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent each word as a single vector,without considering the homonymy and polysemy of the word;thus,their performances are limited.In order to address this problem,an effective topical word embedding(TWE)‐based WSD method,named TWE‐WSD,is proposed,which integrates Latent Dirichlet Allocation(LDA)and word embedding.Instead of generating a single word vector(WV)for each word,TWE‐WSD generates a topical WV for each word under each topic.Effective integrating strategies are designed to obtain high quality contextual vectors.Extensive experiments on SemEval‐2013 and SemEval‐2015 for English all‐words tasks showed that TWE‐WSD outperforms other state‐of‐the‐art WSD methods,especially on nouns.展开更多
Two learning models,Zolu-continuous bags of words(ZL-CBOW)and Zolu-skip-grams(ZL-SG),based on the Zolu function are proposed.The slope of Relu in word2vec has been changed by the Zolu function.The proposed models can ...Two learning models,Zolu-continuous bags of words(ZL-CBOW)and Zolu-skip-grams(ZL-SG),based on the Zolu function are proposed.The slope of Relu in word2vec has been changed by the Zolu function.The proposed models can process extremely large data sets as well as word2vec without increasing the complexity.Also,the models outperform several word embedding methods both in word similarity and syntactic accuracy.The method of ZL-CBOW outperforms CBOW in accuracy by 8.43%on the training set of capital-world,and by 1.24%on the training set of plural-verbs.Moreover,experimental simulations on word similarity and syntactic accuracy show that ZL-CBOW and ZL-SG are superior to LL-CBOW and LL-SG,respectively.展开更多
The statute recommendation problem is a sub problem of the automated decision system, which can help the legal staff to deal with the process of the case in an intelligent and automated way. In this paper, an improved...The statute recommendation problem is a sub problem of the automated decision system, which can help the legal staff to deal with the process of the case in an intelligent and automated way. In this paper, an improved common word similarity algorithm is proposed for normalization. Meanwhile, word mover’s distance (WMD) algorithm was applied to the similarity measurement and statute recommendation problem, and the problem scene which was originally used for classification was extended. Finally, a variety of recommendation strategies different from traditional collaborative filtering methods were proposed. The experimental results show that it achieves the best value of Fmeasure reaching 0.799. And the comparative experiment shows that WMD algorithm can achieve better results than TF-IDF and LDA algorithm.展开更多
The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the edi...The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teamsin making decisions about posting a news article. Article similarity extracted from the articles posted within a smallperiod of time is found to be a useful feature in existing popularity prediction approaches. This work proposesa new approach to estimate the popularity of news articles by adding semantics in the article similarity basedapproach of popularity estimation. A semantically enriched model is proposed which estimates news popularity bymeasuring cosine similarity between document embeddings of the news articles. Word2vec model has been used togenerate distributed representations of the news content. In this work, we define popularity as the number of timesa news article is posted on different websites. We collect data from different websites that post news concerning thedomain of cybersecurity and estimate the popularity of cybersecurity news. The proposed approach is comparedwith different models and it is shown that it outperforms the other models.展开更多
Natural language processing has got great progress recently. Controlling robots with spoken natural language has become expectable. With the reliability problem of this kind of control in mind a confirmation process o...Natural language processing has got great progress recently. Controlling robots with spoken natural language has become expectable. With the reliability problem of this kind of control in mind a confirmation process of natural language instruction should be included before carried out by the robot autonomously and the prototype dialog system was designed thus the standardization problem was raised for the natural and understandable language interaction. In the application background of remotely navigating a mobile robot inside a building with Chinese natural spoken language considering that as an important navigation element in instructions a place name can be expressed with different lexical terms in spoken language this paper proposes a model for substituting different alternatives of a place name with a standard one (called standardization). First a CRF (Conditional Random Fields) model is trained to label the term required be standardized then a trained word embedding model is to represent lexical terms as digital vectors. In the vector space similarity of lexical terms is defined and used to find out the most similar one to the term picked out to be standardized. Experiments show that the method proposed works well and the dialog system responses to confirm the instructions are natural and understandable.展开更多
规模自动化工业生产中的集群数控机床因各种故障导致停机而造成生产线效率的下降,若能及时准确地预测故障对数控机床进行预检预修有利于提高全线生产效率。在工业智能制造背景下,以数据驱动为支撑,数控机床积累的大量历史故障报警数据...规模自动化工业生产中的集群数控机床因各种故障导致停机而造成生产线效率的下降,若能及时准确地预测故障对数控机床进行预检预修有利于提高全线生产效率。在工业智能制造背景下,以数据驱动为支撑,数控机床积累的大量历史故障报警数据为依托,设计了一种基于Word2vec和LSTM-SVM的故障报警预测方法对机床未来可能发生的故障进行预测。首先通过词嵌入技术将报警文本向量化,然后将报警向量作为输入构建长短期记忆神经网络(long short term memory network,LSTM)预测模型,并使用支持向量机(support vector machine,SVM)代替传统的softmax作为模型的末端分类器,实验结果表明该方法具有更高的预测准确率。展开更多
针对词向量语义信息不完整以及文本特征抽取时的一词多义问题,提出基于BERT(Bidirectional Encoder Representation from Transformer)的两次注意力加权算法(TARE)。首先,在词向量编码阶段,通过构建Q、K、V矩阵使用自注意力机制动态编...针对词向量语义信息不完整以及文本特征抽取时的一词多义问题,提出基于BERT(Bidirectional Encoder Representation from Transformer)的两次注意力加权算法(TARE)。首先,在词向量编码阶段,通过构建Q、K、V矩阵使用自注意力机制动态编码算法,为当前词的词向量捕获文本前后词语义信息;其次,在模型输出句子级特征向量后,利用定位信息符提取全连接层对应参数,构建关系注意力矩阵;最后,运用句子级注意力机制算法为每个句子级特征向量添加不同的注意力分数,提高句子级特征的抗噪能力。实验结果表明:在NYT-10m数据集上,与基于对比学习框架的CIL(Contrastive Instance Learning)算法相比,TARE的F1值提升了4.0个百分点,按置信度降序排列后前100、200和300条数据精准率Precision@N的平均值(P@M)提升了11.3个百分点;在NYT-10d数据集上,与基于注意力机制的PCNN-ATT(Piecewise Convolutional Neural Network algorithm based on ATTention mechanism)算法相比,精准率与召回率曲线下的面积(AUC)提升了4.8个百分点,P@M值提升了2.1个百分点。在主流的远程监督关系抽取(DSER)任务中,TARE有效地提升了模型对数据特征的学习能力。展开更多
文摘One of the issues in Computer Vision is the automatic development of descriptions for images,sometimes known as image captioning.Deep Learning techniques have made significant progress in this area.The typical architecture of image captioning systems consists mainly of an image feature extractor subsystem followed by a caption generation lingual subsystem.This paper aims to find optimized models for these two subsystems.For the image feature extraction subsystem,the research tested eight different concatenations of pairs of vision models to get among them the most expressive extracted feature vector of the image.For the caption generation lingual subsystem,this paper tested three different pre-trained language embedding models:Glove(Global Vectors for Word Representation),BERT(Bidirectional Encoder Representations from Transformers),and TaCL(Token-aware Contrastive Learning),to select from them the most accurate pre-trained language embedding model.Our experiments showed that building an image captioning system that uses a concatenation of the two Transformer based models SWIN(Shiftedwindow)and PVT(PyramidVision Transformer)as an image feature extractor,combined with the TaCL language embedding model is the best result among the other combinations.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.3418].
文摘Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification.
文摘One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse of dimensionality, a problem which plagues NLP in general given that the feature set for learning starts as a function of the size of the language in question, upwards of hundreds of thousands of terms typically. As such, much of the research and development in NLP in the last two decades has been in finding and optimizing solutions to this problem, to feature selection in NLP effectively. This paper looks at the development of these various techniques, leveraging a variety of statistical methods which rest on linguistic theories that were advanced in the middle of the last century, namely the distributional hypothesis which suggests that words that are found in similar contexts generally have similar meanings. In this survey paper we look at the development of some of the most popular of these techniques from a mathematical as well as data structure perspective, from Latent Semantic Analysis to Vector Space Models to their more modern variants which are typically referred to as word embeddings. In this review of algoriths such as Word2Vec, GloVe, ELMo and BERT, we explore the idea of semantic spaces more generally beyond applicability to NLP.
基金National Natural Science Foundation of China,Grant/Award Number:61562054The Fund of China Scholarship Council,Grant/Award Number:201908530036Talents Introduction Project of Guangxi University for Nationalities,Grant/Award Number:2014MDQD020。
文摘Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent each word as a single vector,without considering the homonymy and polysemy of the word;thus,their performances are limited.In order to address this problem,an effective topical word embedding(TWE)‐based WSD method,named TWE‐WSD,is proposed,which integrates Latent Dirichlet Allocation(LDA)and word embedding.Instead of generating a single word vector(WV)for each word,TWE‐WSD generates a topical WV for each word under each topic.Effective integrating strategies are designed to obtain high quality contextual vectors.Extensive experiments on SemEval‐2013 and SemEval‐2015 for English all‐words tasks showed that TWE‐WSD outperforms other state‐of‐the‐art WSD methods,especially on nouns.
基金Supported by the National Natural Science Foundation of China(61771051,61675025)。
文摘Two learning models,Zolu-continuous bags of words(ZL-CBOW)and Zolu-skip-grams(ZL-SG),based on the Zolu function are proposed.The slope of Relu in word2vec has been changed by the Zolu function.The proposed models can process extremely large data sets as well as word2vec without increasing the complexity.Also,the models outperform several word embedding methods both in word similarity and syntactic accuracy.The method of ZL-CBOW outperforms CBOW in accuracy by 8.43%on the training set of capital-world,and by 1.24%on the training set of plural-verbs.Moreover,experimental simulations on word similarity and syntactic accuracy show that ZL-CBOW and ZL-SG are superior to LL-CBOW and LL-SG,respectively.
文摘The statute recommendation problem is a sub problem of the automated decision system, which can help the legal staff to deal with the process of the case in an intelligent and automated way. In this paper, an improved common word similarity algorithm is proposed for normalization. Meanwhile, word mover’s distance (WMD) algorithm was applied to the similarity measurement and statute recommendation problem, and the problem scene which was originally used for classification was extended. Finally, a variety of recommendation strategies different from traditional collaborative filtering methods were proposed. The experimental results show that it achieves the best value of Fmeasure reaching 0.799. And the comparative experiment shows that WMD algorithm can achieve better results than TF-IDF and LDA algorithm.
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teamsin making decisions about posting a news article. Article similarity extracted from the articles posted within a smallperiod of time is found to be a useful feature in existing popularity prediction approaches. This work proposesa new approach to estimate the popularity of news articles by adding semantics in the article similarity basedapproach of popularity estimation. A semantically enriched model is proposed which estimates news popularity bymeasuring cosine similarity between document embeddings of the news articles. Word2vec model has been used togenerate distributed representations of the news content. In this work, we define popularity as the number of timesa news article is posted on different websites. We collect data from different websites that post news concerning thedomain of cybersecurity and estimate the popularity of cybersecurity news. The proposed approach is comparedwith different models and it is shown that it outperforms the other models.
基金Sponsored by the Basic Research Development Program of China ( Grant No. 2013CB03554)the Fundamental Research Funds for Universities, Central South University (Grant No. 2017zzts394).
文摘Natural language processing has got great progress recently. Controlling robots with spoken natural language has become expectable. With the reliability problem of this kind of control in mind a confirmation process of natural language instruction should be included before carried out by the robot autonomously and the prototype dialog system was designed thus the standardization problem was raised for the natural and understandable language interaction. In the application background of remotely navigating a mobile robot inside a building with Chinese natural spoken language considering that as an important navigation element in instructions a place name can be expressed with different lexical terms in spoken language this paper proposes a model for substituting different alternatives of a place name with a standard one (called standardization). First a CRF (Conditional Random Fields) model is trained to label the term required be standardized then a trained word embedding model is to represent lexical terms as digital vectors. In the vector space similarity of lexical terms is defined and used to find out the most similar one to the term picked out to be standardized. Experiments show that the method proposed works well and the dialog system responses to confirm the instructions are natural and understandable.
文摘规模自动化工业生产中的集群数控机床因各种故障导致停机而造成生产线效率的下降,若能及时准确地预测故障对数控机床进行预检预修有利于提高全线生产效率。在工业智能制造背景下,以数据驱动为支撑,数控机床积累的大量历史故障报警数据为依托,设计了一种基于Word2vec和LSTM-SVM的故障报警预测方法对机床未来可能发生的故障进行预测。首先通过词嵌入技术将报警文本向量化,然后将报警向量作为输入构建长短期记忆神经网络(long short term memory network,LSTM)预测模型,并使用支持向量机(support vector machine,SVM)代替传统的softmax作为模型的末端分类器,实验结果表明该方法具有更高的预测准确率。
文摘针对词向量语义信息不完整以及文本特征抽取时的一词多义问题,提出基于BERT(Bidirectional Encoder Representation from Transformer)的两次注意力加权算法(TARE)。首先,在词向量编码阶段,通过构建Q、K、V矩阵使用自注意力机制动态编码算法,为当前词的词向量捕获文本前后词语义信息;其次,在模型输出句子级特征向量后,利用定位信息符提取全连接层对应参数,构建关系注意力矩阵;最后,运用句子级注意力机制算法为每个句子级特征向量添加不同的注意力分数,提高句子级特征的抗噪能力。实验结果表明:在NYT-10m数据集上,与基于对比学习框架的CIL(Contrastive Instance Learning)算法相比,TARE的F1值提升了4.0个百分点,按置信度降序排列后前100、200和300条数据精准率Precision@N的平均值(P@M)提升了11.3个百分点;在NYT-10d数据集上,与基于注意力机制的PCNN-ATT(Piecewise Convolutional Neural Network algorithm based on ATTention mechanism)算法相比,精准率与召回率曲线下的面积(AUC)提升了4.8个百分点,P@M值提升了2.1个百分点。在主流的远程监督关系抽取(DSER)任务中,TARE有效地提升了模型对数据特征的学习能力。