Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop...Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach.展开更多
The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are...The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18.展开更多
On December 9,2023,I was privileged to be honored and participate in the Dr.Chi Chao Chan Symposium on Global Collaboration of Eye Research as the Global Eye Genetic Consortium(GEGC)session,which was held in the 16th ...On December 9,2023,I was privileged to be honored and participate in the Dr.Chi Chao Chan Symposium on Global Collaboration of Eye Research as the Global Eye Genetic Consortium(GEGC)session,which was held in the 16th Congress of the Asia-Pacific Vitreo-Retina Society(APVRS)in Hong Kong.Along with my talk on“Global collaboration of eye research:personal experience”,other prominent international speakers provided their own perspectives on opportunities for networking,collaboration,and exchange of ideas with global leaders and experts in ophthalmic practice,research,and education.展开更多
Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the fie...Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.展开更多
As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in dat...As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models.展开更多
The 3rd Asia International Water Week (AIWW),themed"Enhancing Our Future Water Security,"concluded in Beijing on September 26.Delegates from the many Asian countries attending the event widelyrecognized the ...The 3rd Asia International Water Week (AIWW),themed"Enhancing Our Future Water Security,"concluded in Beijing on September 26.Delegates from the many Asian countries attending the event widelyrecognized the water governance philosophy proposed by Chinese President Xi Jinping:"prioritizing water conservation,balancing water distribution in time and space,and taking a systematic approach to water management with the synergy of government and market."展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
BACKGROUND Severe pneumonia is a common severe respiratory infection worldwide,and its treatment is challenging,especially for patients in the intensive care unit(ICU).AIM To explore the effect of communication and co...BACKGROUND Severe pneumonia is a common severe respiratory infection worldwide,and its treatment is challenging,especially for patients in the intensive care unit(ICU).AIM To explore the effect of communication and collaboration between nursing teams on the treatment outcomes of patients with severe pneumonia in ICU.METHODS We retrospectively analyzed 60 patients with severe pneumonia who were treated at the ICU of the hospital between January 1,2021 and December 31,2023.We compared and analyzed the respiratory mechanical indexes[airway resistance(Raw),mean airway pressure(mPaw),peak pressure(PIP)],blood gas analysis indexes(arterial oxygen saturation,arterial oxygen partial pressure,and oxygenation index),and serum inflammatory factor levels[C-reactive protein(CRP),procalcitonin(PCT),cortisol(COR),and high mobility group protein B1(HMGB1)]of all patients before and after treatment.RESULTS Before treatment,there was no significant difference in respiratory mechanics index and blood gas analysis index between 2 groups(P>0.05).However,after treatment,the respiratory mechanical indexes of patients in both groups were significantly improved,and the improvement of Raw,mPaw,plateau pressure,PIP and other indexes in the combined group after communication and collaboration with the nursing team was significantly better than that in the single care group(P<0.05).The serum CRP and PCT levels of patients were significantly decreased,and the difference was statistically significant compared with that of nursing group alone(P<0.05).The levels of serum COR and HMGB1 before and after treatment were also significantly decreased between the two groups.CONCLUSION The communication and collaboration of the nursing team have a significant positive impact on respiratory mechanics indicators,blood gas analysis indicators and serum inflammatory factor levels in the treatment of severe pneumonia patients in ICU.展开更多
To achieve an on-demand and dynamic composition model of inter-organizational business processes, a new approach for business process modeling and verification is introduced by using the pi-calculus theory. A new busi...To achieve an on-demand and dynamic composition model of inter-organizational business processes, a new approach for business process modeling and verification is introduced by using the pi-calculus theory. A new business process model which is multi-role, multi-dimensional, integrated and dynamic is proposed relying on inter-organizational collaboration. Compatible with the traditional linear sequence model, the new model is an M x N multi-dimensional mesh, and provides horizontal and vertical formal descriptions for the collaboration business process model. Finally, the pi-calculus theory is utilized to verify the deadlocks, livelocks and synchronization of the example models. The result shows that the proposed approach is efficient and applicable in inter-organizational business process modeling.展开更多
The empirical work on intercultural communication issues at university settings have mainly focused on the minority cul-tural groups and the majority groups are usually neglected.Most Chinese scholars are engaged in t...The empirical work on intercultural communication issues at university settings have mainly focused on the minority cul-tural groups and the majority groups are usually neglected.Most Chinese scholars are engaged in the development of cross-cultural communication competence of the Chinese EFL learners,the few researches on intercultural relations in Chinese universities are also on the international students.To compare the attitudes and motivations of both the International Students in China(ISCs)and the Chinese Home Students(CHSs)in intercultural collaboration(IC)in the group work,group discussion and questionnaire survey areemployed.Survey of the 445 CHSs and 87 ISCs show that the IC environment at Chinese universities is far from satisfactory.Those who have IC experiences find they have encountered difficulties in adapting to each other's language,race,religion,agenda,etc.Chinese students'language difficulty is regarded both groups as the first obstacle in their collaboration,but personality is the first concern in their choice of a workmate.Neither language proficiency nor IC courses are significant factor in their motivation for IC involvement.What they want most is the real collaboration opportunities and programs.The findings may provide some reference for Chinese universities in their construction of international and intercultural campus environment.展开更多
Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to ful...Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.展开更多
This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to sc...This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to scientific and technological domains are analyzed,and then an ontology that represents their latent collaborative relations is built to detect clusters from the collaboration network. A case study is conducted to collect a data set of research achievements in the electric vehicle field and better clustering results are obtained. A hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources is proposed in the last part of this paper. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.展开更多
Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(...Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.展开更多
Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese ...Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese oncology drug research communities in co-publication networks at the institutional level. Moreover, this research aims to explore structures and behaviors of relevant research units by thematic community analysis and to address policy recommendations. Methods: This research used social network analysis to define an institutions network and to identify a community network which is characterized by thematic content. Results: A total of 675 sample articles from 2008 through 2012 were retrieved from the Science Citation Index Expanded (SCIE) database of Web of Science, and top institutions and institutional pairs are highlighted for further discussion. Meanwhile, this study revealed that institutions based in the Chinese mainland are located in a relatively central position, Taiwan's institutions are closely assembled on the side, and Hong Kong's units located in the middle of the Chinese mainland's and Taiwan's. Spatial division and institutional hierarchy are still critical barriers to research collaboration in the field of anti-cancer drugs in China. In addition, the communities focusing on hot research areas show the higher nodal degree, whereas communities giving more attention to rare research subjects are relatively marginalized to the periphery of network. Conclusions= This paper offers policy recommendations to accelerate cross-regional cooperation, such as through developing information technology and increasing investment. The brokers should focus more on outreach to other institutions. Finally, participation in topics of common interest is conducive to improved efficiency in research and development (R&D) resource allocation.展开更多
Purpose:The aim of this study is to analyze the evolution of international research collaboration from 1980 to 2021.The study examines the main global patterns as well as those specific to individual countries,country...Purpose:The aim of this study is to analyze the evolution of international research collaboration from 1980 to 2021.The study examines the main global patterns as well as those specific to individual countries,country groups,and different areas of research.Design/methodology/approach:The study is based on the Web of Science Core collection database.More than 50 million publications are analyzed using co-authorship data.International collaboration is defined as publications having authors affiliated with institutions located in more than one country.Findings:At the global level,the share of publications representing international collaboration has gradually increased from 4.7%in 1980 to 25.7%in 2021.The proportion of such publications within each country is higher and,in 2021,varied from less than 30%to more than 90%.There are notable disparities in the temporal trends,indicating that the process of internationalization has impacted countries in different ways.Several factors such as country size,income level,and geopolitics may explain the variance.Research limitations:Not all international research collaboration results in joint co-authored scientific publications.International co-authorship is a partial indicator of such collaboration.Another limitation is that the applied full counting method does not take into account the number of authors representing in each country in the publication.Practical implications:The study provides global averages,indicators,and concepts that can provide a useful framework of reference for further comparative studies of international research collaboration.Originality/value:Long-term macro-level studies of international collaboration are rare,and as a novelty,this study includes an analysis by the World Bank’s division of countries into four income groups.展开更多
Purpose: This paper presents findings of a quasi-experimental assessment to gauge the research productivity and degree of interdisciplinarity of research center outputs. Of special interest, we share an enriched visu...Purpose: This paper presents findings of a quasi-experimental assessment to gauge the research productivity and degree of interdisciplinarity of research center outputs. Of special interest, we share an enriched visualization of research co-authoring patterns. Design/methodology/approach: We compile publications by 45 researchers in each of 1) the iUTAH project, which we consider here to be analogous to a "research center," 2) CG1-a comparison group of participants in two other Utah environmental research centers, and 3) CG2--a comparison group of Utah university environmental researchers not associated with a research center. We draw bibliometric data from Web of Science and from Google Scholar. We gather publications for a period before iUTAH had been established (2010-2012) and a period after (2014-2016). We compare these research outputs in terms of publications and citations thereto. We also measure interdisciplinarity using Integration scoring and generate science overlay maps to locate the research publications across disciplines. Findings: We find that participation in the iUTAH project appears to increase research outputs (publications in the After period) and increase research citation rates relative to the comparison group researchers (although CG 1 research remains most cited, as it was in the Before period). Most notably, participation in iUTAH markedly increases co-authoring among researchers--in general; and for junior, as well as senior, faculty; for men and women: across organizations; and across disciplines. Research limitations: The quasi-experimental design necessarily generates suggestive, not definitively causal, findings because of the imperfect controls. Practical implications: This study demonstrates a viable approach for research assessment of a center or program for which random assignment of control groups is not possible. It illustrates use of bibliometric indicators to inform R&D program management. Originality/value: New visualizations of researcher collaboration provide compelling comparisons of the extent and nature of social networking among target cohorts.展开更多
In recent years,metabolic engineering has made great progress in both academic research and industrial applications.However,we have not found any articles that specifically analyze the current state of metabolic engin...In recent years,metabolic engineering has made great progress in both academic research and industrial applications.However,we have not found any articles that specifically analyze the current state of metabolic engineering in China in comparison with other countries.Here,we review the current development and future trends of global metabolic engineering,conduct an in-depth benchmarking analysis of the development situation of China’s metabolic engineering,and identify current problems as well as future trends.We searched publications in the Scopus database from 2015 to September 2020 in the field of metabolic engineering,and analyzed the output in general,including publication trends,research distribution,popular journals,hot topics and vital institutions,but also analyzed the share of citations,field-weighted citation impact,and production in collaboration with strategic countries in science and technology.This study aims to serve as a reference for later studies,offering a comprehensive view of China’s contribution to metabolic engineering,and as a tool for the elaboration of national public policy in science and technology.展开更多
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele...Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.展开更多
Purpose:This study aims to explore the trend and status of international collaboration in the field of artificial intelligence(AI)and to understand the hot topics,core groups,and major collaboration patterns in global...Purpose:This study aims to explore the trend and status of international collaboration in the field of artificial intelligence(AI)and to understand the hot topics,core groups,and major collaboration patterns in global AI research.Design/methodology/approach:We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science(WoS)and studied international collaboration from the perspectives of authors,institutions,and countries through bibliometric analysis and social network analysis.Findings:The bibliometric results show that in the field of AI,the number of published papers is increasing every year,and 84.8%of them are cooperative papers.Collaboration with more than three authors,collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns.Through social network analysis,this study found that the US,the UK,France,and Spain led global collaboration research in the field of AI at the country level,while Vietnam,Saudi Arabia,and United Arab Emirates had a high degree of international participation.Collaboration at the institution level reflects obvious regional and economic characteristics.There are the Developing Countries Institution Collaboration Group led by Iran,China,and Vietnam,as well as the Developed Countries Institution Collaboration Group led by the US,Canada,the UK.Also,the Chinese Academy of Sciences(China)plays an important,pivotal role in connecting the these institutional collaboration groups.Research limitations:First,participant contributions in international collaboration may have varied,but in our research they are viewed equally when building collaboration networks.Second,although the edge weight in the collaboration network is considered,it is only used to help reduce the network and does not reflect the strength of collaboration.Practical implications:The findings fill the current shortage of research on international collaboration in AI.They will help inform scientists and policy makers about the future of AI research.Originality/value:This work is the longest to date regarding international collaboration in the field of AI.This research explores the evolution,future trends,and major collaboration patterns of international collaboration in the field of AI over the past 35 years.It also reveals the leading countries,core groups,and characteristics of collaboration in the field of AI.展开更多
Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accur...Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accurate estimation and prediction of battery health conditions are crucial for battery safety management.In this paper,an end-cloud collaboration method is proposed to approach the track of battery degradation process,integrating end-side empirical model with cloud-side data-driven model.Based on ensemble learning methods,the data-driven model is constructed by three base models to obtain cloud-side highly accurate results.The double exponential decay model is utilized as an empirical model to output highly real-time prediction results.With Kalman filter,the prediction results of end-side empirical model can be periodically updated by highly accurate results of cloud-side data-driven model to obtain highly accurate and real-time results.Subsequently,the whole framework can give an accurate prediction and tracking of battery degradation,with the mean absolute error maintained below 2%.And the execution time on the end side can reach 261μs.The proposed end-cloud collaboration method has the potential to approach highly accurate and highly real-time estimation for battery health conditions during battery full life cycle in architecture of cyber hierarchy and interactional network.展开更多
基金This work is supported by the National Natural Science Foundation of China(Grant No.61672282)the Basic Research Program of Jiangsu Province(Grant No.BK20161491).
文摘Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach.
基金This work is supported by the National Key Research and Development Program(No.2022YFB2702101)Shaanxi Key Industrial Province Projects(2021ZDLGY03-02,2021ZDLGY03-08)the National Natural Science Foundation of China under Grants 62272394 and 92152301.
文摘The proliferation of Internet of Things(IoT)systems has resulted in the generation of substantial data,presenting new challenges in reliable storage and trustworthy sharing.Conventional distributed storage systems are hindered by centralized management and lack traceability,while blockchain systems are limited by low capacity and high latency.To address these challenges,the present study investigates the reliable storage and trustworthy sharing of IoT data,and presents a novel system architecture that integrates on-chain and off-chain data manage systems.This architecture,integrating blockchain and distributed storage technologies,provides high-capacity,high-performance,traceable,and verifiable data storage and access.The on-chain system,built on Hyperledger Fabric,manages metadata,verification data,and permission information of the raw data.The off-chain system,implemented using IPFS Cluster,ensures the reliable storage and efficient access to massive files.A collaborative storage server is designed to integrate on-chain and off-chain operation interfaces,facilitating comprehensive data operations.We provide a unified access interface for user-friendly system interaction.Extensive testing validates the system’s reliability and stable performance.The proposed approach significantly enhances storage capacity compared to standalone blockchain systems.Rigorous reliability tests consistently yield positive outcomes.With average upload and download throughputs of roughly 20 and 30 MB/s,respectively,the system’s throughput surpasses the blockchain system by a factor of 4 to 18.
文摘On December 9,2023,I was privileged to be honored and participate in the Dr.Chi Chao Chan Symposium on Global Collaboration of Eye Research as the Global Eye Genetic Consortium(GEGC)session,which was held in the 16th Congress of the Asia-Pacific Vitreo-Retina Society(APVRS)in Hong Kong.Along with my talk on“Global collaboration of eye research:personal experience”,other prominent international speakers provided their own perspectives on opportunities for networking,collaboration,and exchange of ideas with global leaders and experts in ophthalmic practice,research,and education.
基金supported by grants from the National Natural Science Foundation of China No.NSFC62006109 and NSFC12031005the 13th Five-year plan for Education Science Funding of Guangdong Province No.2021GXJK349,No.2020GXJK457the Stable Support Plan Program of Shenzhen Natural Science Fund No.20220814165010001.
文摘Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.
基金We are thankful for the funding support fromthe Science and Technology Projects of the National Archives Administration of China(Grant Number 2022-R-031)the Fundamental Research Funds for the Central Universities,Central China Normal University(Grant Number CCNU24CG014).
文摘As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models.
文摘The 3rd Asia International Water Week (AIWW),themed"Enhancing Our Future Water Security,"concluded in Beijing on September 26.Delegates from the many Asian countries attending the event widelyrecognized the water governance philosophy proposed by Chinese President Xi Jinping:"prioritizing water conservation,balancing water distribution in time and space,and taking a systematic approach to water management with the synergy of government and market."
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
文摘BACKGROUND Severe pneumonia is a common severe respiratory infection worldwide,and its treatment is challenging,especially for patients in the intensive care unit(ICU).AIM To explore the effect of communication and collaboration between nursing teams on the treatment outcomes of patients with severe pneumonia in ICU.METHODS We retrospectively analyzed 60 patients with severe pneumonia who were treated at the ICU of the hospital between January 1,2021 and December 31,2023.We compared and analyzed the respiratory mechanical indexes[airway resistance(Raw),mean airway pressure(mPaw),peak pressure(PIP)],blood gas analysis indexes(arterial oxygen saturation,arterial oxygen partial pressure,and oxygenation index),and serum inflammatory factor levels[C-reactive protein(CRP),procalcitonin(PCT),cortisol(COR),and high mobility group protein B1(HMGB1)]of all patients before and after treatment.RESULTS Before treatment,there was no significant difference in respiratory mechanics index and blood gas analysis index between 2 groups(P>0.05).However,after treatment,the respiratory mechanical indexes of patients in both groups were significantly improved,and the improvement of Raw,mPaw,plateau pressure,PIP and other indexes in the combined group after communication and collaboration with the nursing team was significantly better than that in the single care group(P<0.05).The serum CRP and PCT levels of patients were significantly decreased,and the difference was statistically significant compared with that of nursing group alone(P<0.05).The levels of serum COR and HMGB1 before and after treatment were also significantly decreased between the two groups.CONCLUSION The communication and collaboration of the nursing team have a significant positive impact on respiratory mechanics indicators,blood gas analysis indicators and serum inflammatory factor levels in the treatment of severe pneumonia patients in ICU.
基金The National Natural Science Foundation of China(No60473078)
文摘To achieve an on-demand and dynamic composition model of inter-organizational business processes, a new approach for business process modeling and verification is introduced by using the pi-calculus theory. A new business process model which is multi-role, multi-dimensional, integrated and dynamic is proposed relying on inter-organizational collaboration. Compatible with the traditional linear sequence model, the new model is an M x N multi-dimensional mesh, and provides horizontal and vertical formal descriptions for the collaboration business process model. Finally, the pi-calculus theory is utilized to verify the deadlocks, livelocks and synchronization of the example models. The result shows that the proposed approach is efficient and applicable in inter-organizational business process modeling.
文摘The empirical work on intercultural communication issues at university settings have mainly focused on the minority cul-tural groups and the majority groups are usually neglected.Most Chinese scholars are engaged in the development of cross-cultural communication competence of the Chinese EFL learners,the few researches on intercultural relations in Chinese universities are also on the international students.To compare the attitudes and motivations of both the International Students in China(ISCs)and the Chinese Home Students(CHSs)in intercultural collaboration(IC)in the group work,group discussion and questionnaire survey areemployed.Survey of the 445 CHSs and 87 ISCs show that the IC environment at Chinese universities is far from satisfactory.Those who have IC experiences find they have encountered difficulties in adapting to each other's language,race,religion,agenda,etc.Chinese students'language difficulty is regarded both groups as the first obstacle in their collaboration,but personality is the first concern in their choice of a workmate.Neither language proficiency nor IC courses are significant factor in their motivation for IC involvement.What they want most is the real collaboration opportunities and programs.The findings may provide some reference for Chinese universities in their construction of international and intercultural campus environment.
基金supported by the National Natural Science Foundation of China(61273210)the National High Technology Research and Development Program of China(863 Program)(2007AA01Z126)
文摘Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.
基金Supported by the National Social Science Foundation of China(No.14CTQ045)China Postdoctoral Science Foundation(No.2015M570131)
文摘This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to scientific and technological domains are analyzed,and then an ontology that represents their latent collaborative relations is built to detect clusters from the collaboration network. A case study is conducted to collect a data set of research achievements in the electric vehicle field and better clustering results are obtained. A hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources is proposed in the last part of this paper. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20010103)。
文摘Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.
基金the University of Macao for financial support for this research by the project MYRG119(Y1-L3)-ICMS12-HYJ
文摘Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese oncology drug research communities in co-publication networks at the institutional level. Moreover, this research aims to explore structures and behaviors of relevant research units by thematic community analysis and to address policy recommendations. Methods: This research used social network analysis to define an institutions network and to identify a community network which is characterized by thematic content. Results: A total of 675 sample articles from 2008 through 2012 were retrieved from the Science Citation Index Expanded (SCIE) database of Web of Science, and top institutions and institutional pairs are highlighted for further discussion. Meanwhile, this study revealed that institutions based in the Chinese mainland are located in a relatively central position, Taiwan's institutions are closely assembled on the side, and Hong Kong's units located in the middle of the Chinese mainland's and Taiwan's. Spatial division and institutional hierarchy are still critical barriers to research collaboration in the field of anti-cancer drugs in China. In addition, the communities focusing on hot research areas show the higher nodal degree, whereas communities giving more attention to rare research subjects are relatively marginalized to the periphery of network. Conclusions= This paper offers policy recommendations to accelerate cross-regional cooperation, such as through developing information technology and increasing investment. The brokers should focus more on outreach to other institutions. Finally, participation in topics of common interest is conducive to improved efficiency in research and development (R&D) resource allocation.
文摘Purpose:The aim of this study is to analyze the evolution of international research collaboration from 1980 to 2021.The study examines the main global patterns as well as those specific to individual countries,country groups,and different areas of research.Design/methodology/approach:The study is based on the Web of Science Core collection database.More than 50 million publications are analyzed using co-authorship data.International collaboration is defined as publications having authors affiliated with institutions located in more than one country.Findings:At the global level,the share of publications representing international collaboration has gradually increased from 4.7%in 1980 to 25.7%in 2021.The proportion of such publications within each country is higher and,in 2021,varied from less than 30%to more than 90%.There are notable disparities in the temporal trends,indicating that the process of internationalization has impacted countries in different ways.Several factors such as country size,income level,and geopolitics may explain the variance.Research limitations:Not all international research collaboration results in joint co-authored scientific publications.International co-authorship is a partial indicator of such collaboration.Another limitation is that the applied full counting method does not take into account the number of authors representing in each country in the publication.Practical implications:The study provides global averages,indicators,and concepts that can provide a useful framework of reference for further comparative studies of international research collaboration.Originality/value:Long-term macro-level studies of international collaboration are rare,and as a novelty,this study includes an analysis by the World Bank’s division of countries into four income groups.
基金The five-year "innovative Urban Transitions and Aridregion Hydro-sustainability" (iUTAH) project was initiated in 2012 with support from the US National Science Foundation’s (NSF) "Established Program to Stimulate Competitive Research" (EPSCo R, award # OIA-1208732)
文摘Purpose: This paper presents findings of a quasi-experimental assessment to gauge the research productivity and degree of interdisciplinarity of research center outputs. Of special interest, we share an enriched visualization of research co-authoring patterns. Design/methodology/approach: We compile publications by 45 researchers in each of 1) the iUTAH project, which we consider here to be analogous to a "research center," 2) CG1-a comparison group of participants in two other Utah environmental research centers, and 3) CG2--a comparison group of Utah university environmental researchers not associated with a research center. We draw bibliometric data from Web of Science and from Google Scholar. We gather publications for a period before iUTAH had been established (2010-2012) and a period after (2014-2016). We compare these research outputs in terms of publications and citations thereto. We also measure interdisciplinarity using Integration scoring and generate science overlay maps to locate the research publications across disciplines. Findings: We find that participation in the iUTAH project appears to increase research outputs (publications in the After period) and increase research citation rates relative to the comparison group researchers (although CG 1 research remains most cited, as it was in the Before period). Most notably, participation in iUTAH markedly increases co-authoring among researchers--in general; and for junior, as well as senior, faculty; for men and women: across organizations; and across disciplines. Research limitations: The quasi-experimental design necessarily generates suggestive, not definitively causal, findings because of the imperfect controls. Practical implications: This study demonstrates a viable approach for research assessment of a center or program for which random assignment of control groups is not possible. It illustrates use of bibliometric indicators to inform R&D program management. Originality/value: New visualizations of researcher collaboration provide compelling comparisons of the extent and nature of social networking among target cohorts.
基金The research was financially supported by the National Natural Science Foundation of China(NSFC-21776209,NSFC-21621004,NSFC-21776208)Natural Science Foundation of Tianjin(No.19JCYBJC21100).
文摘In recent years,metabolic engineering has made great progress in both academic research and industrial applications.However,we have not found any articles that specifically analyze the current state of metabolic engineering in China in comparison with other countries.Here,we review the current development and future trends of global metabolic engineering,conduct an in-depth benchmarking analysis of the development situation of China’s metabolic engineering,and identify current problems as well as future trends.We searched publications in the Scopus database from 2015 to September 2020 in the field of metabolic engineering,and analyzed the output in general,including publication trends,research distribution,popular journals,hot topics and vital institutions,but also analyzed the share of citations,field-weighted citation impact,and production in collaboration with strategic countries in science and technology.This study aims to serve as a reference for later studies,offering a comprehensive view of China’s contribution to metabolic engineering,and as a tool for the elaboration of national public policy in science and technology.
基金Project(70631004)supported by the Key Project of the National Natural Science Foundation of ChinaProject(20080440988)supported by the Postdoctoral Science Foundation of China+1 种基金Project(09JJ4030)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.
基金We acknowledge the National Natural Science Foundation of China(Grant No.71673143)the National Social Science Foundation of China(Grant No.19BTQ062)for thier financial support.
文摘Purpose:This study aims to explore the trend and status of international collaboration in the field of artificial intelligence(AI)and to understand the hot topics,core groups,and major collaboration patterns in global AI research.Design/methodology/approach:We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science(WoS)and studied international collaboration from the perspectives of authors,institutions,and countries through bibliometric analysis and social network analysis.Findings:The bibliometric results show that in the field of AI,the number of published papers is increasing every year,and 84.8%of them are cooperative papers.Collaboration with more than three authors,collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns.Through social network analysis,this study found that the US,the UK,France,and Spain led global collaboration research in the field of AI at the country level,while Vietnam,Saudi Arabia,and United Arab Emirates had a high degree of international participation.Collaboration at the institution level reflects obvious regional and economic characteristics.There are the Developing Countries Institution Collaboration Group led by Iran,China,and Vietnam,as well as the Developed Countries Institution Collaboration Group led by the US,Canada,the UK.Also,the Chinese Academy of Sciences(China)plays an important,pivotal role in connecting the these institutional collaboration groups.Research limitations:First,participant contributions in international collaboration may have varied,but in our research they are viewed equally when building collaboration networks.Second,although the edge weight in the collaboration network is considered,it is only used to help reduce the network and does not reflect the strength of collaboration.Practical implications:The findings fill the current shortage of research on international collaboration in AI.They will help inform scientists and policy makers about the future of AI research.Originality/value:This work is the longest to date regarding international collaboration in the field of AI.This research explores the evolution,future trends,and major collaboration patterns of international collaboration in the field of AI over the past 35 years.It also reveals the leading countries,core groups,and characteristics of collaboration in the field of AI.
基金financially supported by the National Natural Science Foundation of China(No.52102470)。
文摘Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accurate estimation and prediction of battery health conditions are crucial for battery safety management.In this paper,an end-cloud collaboration method is proposed to approach the track of battery degradation process,integrating end-side empirical model with cloud-side data-driven model.Based on ensemble learning methods,the data-driven model is constructed by three base models to obtain cloud-side highly accurate results.The double exponential decay model is utilized as an empirical model to output highly real-time prediction results.With Kalman filter,the prediction results of end-side empirical model can be periodically updated by highly accurate results of cloud-side data-driven model to obtain highly accurate and real-time results.Subsequently,the whole framework can give an accurate prediction and tracking of battery degradation,with the mean absolute error maintained below 2%.And the execution time on the end side can reach 261μs.The proposed end-cloud collaboration method has the potential to approach highly accurate and highly real-time estimation for battery health conditions during battery full life cycle in architecture of cyber hierarchy and interactional network.