期刊文献+
共找到10,519篇文章
< 1 2 250 >
每页显示 20 50 100
A multi-source data fusion modeling method for debris flow prevention engineering 被引量:1
1
作者 XU Qing-yang YE Jian LYU Yi-jie 《Journal of Mountain Science》 SCIE CSCD 2021年第4期1049-1061,共13页
The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flo... The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process. 展开更多
关键词 Debris flow prevention Level of detail Debris flow simulation Multi platform fusion Multi source data fusion
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
2
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
3
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
4
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
Carbon Emission Evaluation in Jinan Western New District based on Multi-source Data Fusion 被引量:2
5
作者 XIAO Huabin HE Xinyu +1 位作者 KUANG Yuanlin WU Binglu 《Journal of Resources and Ecology》 CSCD 2021年第3期346-357,共12页
Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emissi... Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions. 展开更多
关键词 carbon emission evaluation low-carbon eco-city spatial analysis multi-source data fusion Jinan Western New District
原文传递
Recent trends of machine learning applied to multi-source data of medicinal plants 被引量:2
6
作者 Yanying Zhang Yuanzhong Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1388-1407,共20页
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese... In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants. 展开更多
关键词 Machine learning Medicinal plant multi-source data data fusion Application
下载PDF
Multi-Source Data Privacy Protection Method Based on Homomorphic Encryption and Blockchain 被引量:3
7
作者 Ze Xu Sanxing Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期861-881,共21页
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin... Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications. 展开更多
关键词 Homomorphic encryption blockchain technology multi-source data data privacy protection privacy data processing
下载PDF
Multi-source Data-driven Identification of Urban Functional Areas:A Case of Shenyang,China 被引量:3
8
作者 XUE Bing XIAO Xiao +2 位作者 LI Jingzhong ZHAO Bingyu FU Bo 《Chinese Geographical Science》 SCIE CSCD 2023年第1期21-35,共15页
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ... Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective. 展开更多
关键词 human-land relationship multi-source big data urban functional area identification method Shenyang City
下载PDF
A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
9
作者 Xiu Liu Liang Gu +3 位作者 Xin Gong Long An Xurui Gao Juying Wu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4045-4061,共17页
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi... With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed. 展开更多
关键词 data alignment dimension reduction feature fusion data anomaly detection deep learning
下载PDF
A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau
10
作者 Ming CHENG Lei ZHONG +6 位作者 Yaoming MA Han MA Yaoxin CHANG Peizhen LI Meilin CHENG Xian WANG Nan GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期435-448,共14页
Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in th... Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in the evaluation and integration of ET products in remote and complex areas such as the Tibetan Plateau(TP).In this paper,the applicability of the multiple collocation(MC)method over the TP is evaluated for the first time,and the uncertainty of multisource ET products(based on reanalysis,remote sensing,and land surface models)is further analyzed,which provides a theoretical basis for ET data fusion.The results show that 1)ET uncertainties quantified via the MC method are lower in RS-based ET products(5.95 vs.7.06 mm month^(-1))than in LSM ET products(10.22 vs.17.97 mm month^(-1))and reanalysis ET estimates(7.27 vs.12.26 mm month-1).2)A multisource evapotranspiration(MET)dataset is generated at a monthly temporal scale with a spatial resolution of 0.25°across the TP during 2005-15.MET has better performance than any individual product.3)Based on the fusion product,the total ET amount over the TP and its patterns of spatiotemporal variability are clearly identified.The annual total ET over the entire TP is approximately 380.60 mm.Additionally,an increasing trend of 1.59±0.85 mm yr^(-1)over the TP is shown during 2005-15.This study provides a basis for future studies on water and energy cycles and water resource management over the TP and surrounding regions. 展开更多
关键词 EVAPOTRANSPIRATION data fusion multiple collocation the Tibetan Plateau
下载PDF
Parameter Estimation of a Valve-Controlled Cylinder System Model Based on Bench Test and Operating Data Fusion
11
作者 Deying Su Shaojie Wang +3 位作者 Haojing Lin Xiaosong Xia Yubing Xu Liang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期247-263,共17页
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ... The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies. 展开更多
关键词 Valve-controlled cylinder system Parameter estimation The Bayesian theory data fusion method Weight coefficients
下载PDF
A heuristic cabin-type component alignment method based on multi-source data fusion
12
作者 Hao YU Fuzhou DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第8期2242-2256,共15页
In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assi... In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assisted assembly(MAA) and force-driven assembly. In MAA,relative pose between components is directly measured to guide assembly, while in force-driven assembly, only contact state can be recognized according to measured six-dimensional force and torque(6 D F/T) and the process is completed based on preset assembly strategy. Aiming to improve the efficiency of force-driven cabin-type component alignment, this paper proposed a heuristic alignment method based on multi-source data fusion. In this method, measured 6 D F/T, pose data and geometric information of components are fused to calculate the relative pose between components and guide the movement of pose adjustment platform. Among these data types, pose data and measured 6 D F/T are combined as data set. To collect the data sets needed for data fusion, dynamic gravity compensation method and hybrid motion control method are designed. Then the relative pose calculation method is elaborated, which transforms collected data sets into discrete geometric elements and calculates the relative poses based on the geometric information of components.Finally, experiments are conducted in simulation environment and the results show that the proposed alignment method is feasible and effective. 展开更多
关键词 Alignment strategy Force-driven assembly Heuristic alignment method multi-source data fusion Relative pose calculation
原文传递
Optimized air-ground data fusion method for mine slope modeling
13
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
下载PDF
Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion
14
作者 Liu Xing Hu Guangdao Qiu Yubao Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期278-282,共5页
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper... The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly. 展开更多
关键词 geological data GIS-based vector data conversion image processing multi-source data fusion
下载PDF
Risk Analysis Using Multi-Source Data for Distribution Networks Facing Extreme Natural Disasters
15
作者 Jun Yang Nannan Wang +1 位作者 Jiang Wang Yashuai Luo 《Energy Engineering》 EI 2023年第9期2079-2096,共18页
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera... Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters. 展开更多
关键词 Distribution network disaster damage analysis fault judgment multi-source data
下载PDF
Evaluation and Improvement Strategies for Slow Traffic Systems Based on Multi-source Big Data:A Case Study of Shijingshan District of Beijing City
16
作者 LI Yiwen 《Journal of Landscape Research》 2023年第4期62-64,68,共4页
The slow traffic system is an important component of urban transportation,and the prerequisite and necessary condition for Beijing to continue promoting“green priority”are establishing a good urban slow traffic syst... The slow traffic system is an important component of urban transportation,and the prerequisite and necessary condition for Beijing to continue promoting“green priority”are establishing a good urban slow traffic system.Shijingshan District of Beijing City is taken as a research object.By analyzing and processing population distribution data,POI data,and shared bicycle data,the shortcomings and deficiencies of the current slow traffic system in Shijingshan District are explored,and corresponding solutions are proposed,in order to provide new ideas and methods for future urban planning from the perspective of data. 展开更多
关键词 multi-source data Slow traffic system Shijingshan District
下载PDF
Classification of Beijing Line 10 Subway Living Circle Based on Multi-source Big Data
17
作者 SUN Shuai LI Ziying 《Journal of Landscape Research》 2023年第3期53-58,共6页
In the first-tier cities,subway has become an important carrier and life focus of people’s daily travel activities.By studying the distribution of POIs of public service facilities around Metro Line 10,using GIS to q... In the first-tier cities,subway has become an important carrier and life focus of people’s daily travel activities.By studying the distribution of POIs of public service facilities around Metro Line 10,using GIS to quantitatively analyze the surrounding formats of subway stations,discussing the functional attributes of subway stations,and discussing the distribution of urban functions from a new perspective,this paper provided guidance and advice for the construction of service facilities. 展开更多
关键词 multi-source big data Subway living circle BEIJING GIS
下载PDF
Research on Data Fusion of Adaptive Weighted Multi-Source Sensor 被引量:3
18
作者 Donghui Li Cong Shen +5 位作者 Xiaopeng Dai Xinghui Zhu Jian Luo Xueting Li Haiwen Chen Zhiyao Liang 《Computers, Materials & Continua》 SCIE EI 2019年第9期1217-1231,共15页
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu... Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality. 展开更多
关键词 Adaptive weighting multi-source sensor data fusion loss of data processing grubbs elimination
下载PDF
Threat Modeling and Application Research Based on Multi-Source Attack and Defense Knowledge
19
作者 Shuqin Zhang Xinyu Su +2 位作者 Peiyu Shi Tianhui Du Yunfei Han 《Computers, Materials & Continua》 SCIE EI 2023年第10期349-377,共29页
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u... Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment. 展开更多
关键词 multi-source data fusion threat modeling threat propagation path knowledge graph intelligent defense decision-making
下载PDF
Separation method for multi-source blended seismic data
20
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部