Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.展开更多
The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules...The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on be...Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.展开更多
The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more ...The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.展开更多
Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key mot...Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational h...Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.展开更多
Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal ex...Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development...Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.展开更多
Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to...Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to November 2021 were randomly selected,and all samples were manually microscopic examined after the detection of the UN9000 urine analysis line.The intelligent audit rules(including the microscopic review rules and manual verification rules)were validated based on the manual microscopic examination and manual audit,and the rules were adjusted to apply to our laboratory.The laboratory turnaround time(TAT)before and after the application of intelligent audit rules was compared.Result:The microscopic review rate of intelligent rules was 25.63%(292/1139),the true positive rate,false positive rate,true negative rate,and false negative rate were 27.66%(315/1139),6.49%(74/1139),62.34%(710/1139)and 3.51%(40/1139),respectively.The approval consistency rate of manual verification rules was 84.92%(727/856),the approval inconsistency rate was 0%(0/856),the interception consistency rate was 12.61%(108/856),and the interception inconsistency rate was 0%(0/856).Conclusion:The intelligence audit rules for urine analysis by Cui et al.have good clinical applicability in our laboratory.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese...In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.展开更多
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ...Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective.展开更多
A secure operating system in the communication network can provide the stable working environment,which ensures that the user information is not stolen.The micro-kernel operating system in the communication network re...A secure operating system in the communication network can provide the stable working environment,which ensures that the user information is not stolen.The micro-kernel operating system in the communication network retains the core functions in the kernel,and unnecessary tasks are implemented by calling external processes.Due to the small amount of code,the micro-kernel architecture has high reliability and scalability.Taking the microkernel operating system in the communication network prototype VSOS as an example,we employ the objdump tool to disassemble the system source code and get the assembly layer code.On this basis,we apply the Isabelle/HOL,a formal verification tool,to model the system prototype.By referring to the mathematical model of finite automata and taking the process scheduling module as an example,the security verification based on the assembly language layer is developed.Based on the Hoare logic theory,each assembly statement of the module is verified in turn.The verification results show that the scheduling module of VSOS has good functional security,and also show the feasibility of the refinement framework.展开更多
Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the...Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws.In this work,a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-εturbulence equation.The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results,which verifies the accuracy of the simulation model calculation.The plasma jet is a long strip with an initial velocity of 1.0 km·s-1and develops in both axial and radial directions.The jet velocity fluctuates significantly with axial height.As the plasma jet enters the main gap,the pressure inside the trigger cavity drops by80%,resulting in a rapid drop in the jet velocity.When the plasma jet head interacts with the atmosphere,the two-phase fluid compresses each other,generating a forward-propelled pressure wave.The plasma jet heads flow at high velocity,a negative pressure zone is formed in the middle part of the jet,and the pressure peak decreases gradually with height.As the value of the inlet pressure increases,the characteristic parameters of the plasma jet increase.The entrainment phenomenon is evident,which leads to an increase in the pressure imbalance of the atmospheric gas medium,leading to a significant Coanda effect.Compared with air,the characteristic parameters of a plasma jet in SF6are lower,and the morphological evolution is significantly suppressed.The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process.展开更多
Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)h...Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
基金supported in part by the Natural Science Foundation of Jiangsu Province in China under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
文摘The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by National Natural Science Foundation of China(62032003).
文摘Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.
基金supported by National Natural Science Foundation of China under Grant No.61972360Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2020MF148,ZR2020QF108.
文摘The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.
文摘Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金National Natural Science Foundation of China(Grant No.62073227)Liaoning Provincial Science and Technology Department Foundation(Grant No.2023JH2/101300212).
文摘Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.
基金funding from the Basic Research Project of the Education Department of Shaanxi Province(21JC010,21JP035)the Young and Middle-Aged Scientific Research and Innovation Team of the Shaanxi Provincial Administration of Traditional Chinese Medicine(2022SLRHLJ001)the 2023 Central Financial Transfer Payment Local Project“Innovation and Improvement of Five Types of Hospital Preparations,Such as Roumudan Granules”.
文摘Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金National Key Research and Development Program of China(No.2023YFB3907103).
文摘Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.
文摘Objective:To apply and verify the application of intelligent audit rules for urine analysis by Cui et al.Method:A total of 1139 urine samples of hospitalized patients in Tai’an Central Hospital from September 2021 to November 2021 were randomly selected,and all samples were manually microscopic examined after the detection of the UN9000 urine analysis line.The intelligent audit rules(including the microscopic review rules and manual verification rules)were validated based on the manual microscopic examination and manual audit,and the rules were adjusted to apply to our laboratory.The laboratory turnaround time(TAT)before and after the application of intelligent audit rules was compared.Result:The microscopic review rate of intelligent rules was 25.63%(292/1139),the true positive rate,false positive rate,true negative rate,and false negative rate were 27.66%(315/1139),6.49%(74/1139),62.34%(710/1139)and 3.51%(40/1139),respectively.The approval consistency rate of manual verification rules was 84.92%(727/856),the approval inconsistency rate was 0%(0/856),the interception consistency rate was 12.61%(108/856),and the interception inconsistency rate was 0%(0/856).Conclusion:The intelligence audit rules for urine analysis by Cui et al.have good clinical applicability in our laboratory.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
基金supported by the National Natural Science Foundation of China(Grant No.:U2202213)the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant Nos.:202102AE090051-1-01,and 202202AE090001).
文摘In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.
基金Under the auspices of Natural Science Foundation of China(No.41971166)。
文摘Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective.
基金This work was supported in part by the Natural Science Foundation of Jiangsu Province under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘A secure operating system in the communication network can provide the stable working environment,which ensures that the user information is not stolen.The micro-kernel operating system in the communication network retains the core functions in the kernel,and unnecessary tasks are implemented by calling external processes.Due to the small amount of code,the micro-kernel architecture has high reliability and scalability.Taking the microkernel operating system in the communication network prototype VSOS as an example,we employ the objdump tool to disassemble the system source code and get the assembly layer code.On this basis,we apply the Isabelle/HOL,a formal verification tool,to model the system prototype.By referring to the mathematical model of finite automata and taking the process scheduling module as an example,the security verification based on the assembly language layer is developed.Based on the Hoare logic theory,each assembly statement of the module is verified in turn.The verification results show that the scheduling module of VSOS has good functional security,and also show the feasibility of the refinement framework.
基金supported by National Natural Science Foundation of China(No.52107142)。
文摘Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws.In this work,a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-εturbulence equation.The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results,which verifies the accuracy of the simulation model calculation.The plasma jet is a long strip with an initial velocity of 1.0 km·s-1and develops in both axial and radial directions.The jet velocity fluctuates significantly with axial height.As the plasma jet enters the main gap,the pressure inside the trigger cavity drops by80%,resulting in a rapid drop in the jet velocity.When the plasma jet head interacts with the atmosphere,the two-phase fluid compresses each other,generating a forward-propelled pressure wave.The plasma jet heads flow at high velocity,a negative pressure zone is formed in the middle part of the jet,and the pressure peak decreases gradually with height.As the value of the inlet pressure increases,the characteristic parameters of the plasma jet increase.The entrainment phenomenon is evident,which leads to an increase in the pressure imbalance of the atmospheric gas medium,leading to a significant Coanda effect.Compared with air,the characteristic parameters of a plasma jet in SF6are lower,and the morphological evolution is significantly suppressed.The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process.
基金Prince Sultan University for funding this publication’s Article Process Charges(APC).
文摘Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism.