期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
Slope displacement prediction based on multisource domain transfer learning for insufficient sample data
1
作者 Zheng Hai-Qing Hu Lin-Ni +2 位作者 Sun Xiao-Yun Zhang Yu Jin Shen-Yi 《Applied Geophysics》 SCIE CSCD 2024年第3期496-504,618,共10页
Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displ... Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data. 展开更多
关键词 slope displacement multisource domain transfer learning(MDTL) variational mode decomposition(VMD) generative adversarial network(GAN) Wasserstein-GAN
下载PDF
Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process
2
作者 Qixin Lan Binqiang Chen +1 位作者 Bin Yao Wangpeng He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2825-2844,共20页
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s... The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains. 展开更多
关键词 Multi-working conditions tool wear state recognition unsupervised transfer learning domain adaptation maximum mean discrepancy(MMD)
下载PDF
Transfer Learning for Prognostics and Health Management:Advances,Challenges,and Opportunities
3
作者 Ruqiang Yan Weihua Li +5 位作者 Siliang Lu Min Xia Zhuyun Chen Zheng Zhou Yasong Li Jingfeng Lu 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期60-82,共23页
As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadri... As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadriven methods.In this paper,we briefly discuss general idea and advances of various transfer learning techniques in PHM domain,including domain adaptation,domain generalization,federated learning,and knowledge-driven transfer learning.Based on the observations from state of the art,we provide extensive discussions on possible challenges and opportunities of transfer learning in PHM domain to direct future development. 展开更多
关键词 domain adaptation domain generalization federated learning knowledge-driven PHM transfer learning
下载PDF
Deep Domain-Adversarial Anomaly Detection With One-Class Transfer Learning 被引量:1
4
作者 Wentao Mao Gangsheng Wang +1 位作者 Linlin Kou Xihui Liang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期524-546,共23页
Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-c... Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness. 展开更多
关键词 Anomaly detection domain adaptation domainadversarial training one-class classification transfer learning
下载PDF
Knowledge Transfer Learning via Dual Density Sampling for Resource-Limited Domain Adaptation 被引量:1
5
作者 Zefeng Zheng Luyao Teng +2 位作者 Wei Zhang Naiqi Wu Shaohua Teng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2269-2291,共23页
Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global... Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global sampling but neglect to exploit global and local sampling simultaneously;ⅱ)they either transfer knowledge from a global perspective or a local perspective,while overlooking transmission of confident knowledge from both perspectives;and ⅲ) they apply repeated sampling during iteration,which takes a lot of time.To address these problems,knowledge transfer learning via dual density sampling(KTL-DDS) is proposed in this study,which consists of three parts:ⅰ) Dual density sampling(DDS) that jointly leverages two sampling methods associated with different views,i.e.,global density sampling that extracts representative samples with the most common features and local density sampling that selects representative samples with critical boundary information;ⅱ)Consistent maximum mean discrepancy(CMMD) that reduces intra-and cross-domain risks and guarantees high consistency of knowledge by shortening the distances of every two subsets among the four subsets collected by DDS;and ⅲ) Knowledge dissemination(KD) that transmits confident and consistent knowledge from the representative target samples with global and local properties to the whole target domain by preserving the neighboring relationships of the target domain.Mathematical analyses show that DDS avoids repeated sampling during the iteration.With the above three actions,confident knowledge with both global and local properties is transferred,and the memory and running time are greatly reduced.In addition,a general framework named dual density sampling approximation(DDSA) is extended,which can be easily applied to other DA algorithms.Extensive experiments on five datasets in clean,label corruption(LC),feature missing(FM),and LC&FM environments demonstrate the encouraging performance of KTL-DDS. 展开更多
关键词 Cross-domain risk dual density sampling intra-domain risk maximum mean discrepancy knowledge transfer learning resource-limited domain adaptation
下载PDF
Neural Network-Based Limiter with Transfer Learning 被引量:1
6
作者 Rémi Abgrall Maria Han Veiga 《Communications on Applied Mathematics and Computation》 2023年第2期532-572,共41页
Recent works have shown that neural networks are promising parameter-free limiters for a variety of numerical schemes(Morgan et al.in A machine learning approach for detect-ing shocks with high-order hydrodynamic meth... Recent works have shown that neural networks are promising parameter-free limiters for a variety of numerical schemes(Morgan et al.in A machine learning approach for detect-ing shocks with high-order hydrodynamic methods.et al.in J Comput Phys 367:166-191.,2018;Veiga et al.in European Conference on Computational Mechanics andⅦEuropean Conference on Computational Fluid Dynamics,vol.1,pp.2525-2550.ECCM.,2018).Following this trend,we train a neural network to serve as a shock-indicator function using simulation data from a Runge-Kutta discontinuous Galer-kin(RKDG)method and a modal high-order limiter(Krivodonova in J Comput Phys 226:879-896.,2007).With this methodology,we obtain one-and two-dimensional black-box shock-indicators which are then coupled to a standard limiter.Furthermore,we describe a strategy to transfer the shock-indicator to a residual distribution(RD)scheme without the need for a full training cycle and large data-set,by finding a mapping between the solution feature spaces from an RD scheme to an RKDG scheme,both in one-and two-dimensional problems,and on Cartesian and unstruc-tured meshes.We report on the quality of the numerical solutions when using the neural network shock-indicator coupled to a limiter,comparing its performance to traditional lim-iters,for both RKDG and RD schemes. 展开更多
关键词 LIMITERS Neural networks transfer learning domain adaptation
下载PDF
Balanced Discriminative Transfer Feature Learning for Visual Domain Adaptation
7
作者 SU Limin ZHANG Qiang +1 位作者 LI Shuang Chi Harold LIU 《ZTE Communications》 2020年第4期78-83,共6页
Transfer learning aims to transfer source models to a target domain.Leveraging the feature matching can alleviate the domain shift effectively,but this process ignores the relationship of the marginal distribution mat... Transfer learning aims to transfer source models to a target domain.Leveraging the feature matching can alleviate the domain shift effectively,but this process ignores the relationship of the marginal distribution matching and the conditional distribution matching.Simultaneously,the discriminative information of both domains is also neglected,which is important for improving the performance on the target domain.In this paper,we propose a novel method called Balanced Discriminative Transfer Feature Learning for Visual Domain Adaptation(BDTFL).The proposed method can adaptively balance the relationship of both distribution matchings and capture the category discriminative information of both domains.Therefore,balanced feature matching can achieve more accurate feature matching and adaptively adjust itself to different scenes.At the same time,discriminative information is exploited to alleviate category confusion during feature matching.And with assistance of the category discriminative information captured from both domains,the source classifier can be transferred to the target domain more accurately and boost the performance of target classification.Extensive experiments show the superiority of BDTFL on popular visual cross-domain benchmarks. 展开更多
关键词 transfer learning domain adaptation distribution adaptation discriminative information
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
8
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Enhancing source domain availability through data and feature transfer learning for building power load forecasting
9
作者 Fanyue Qian Yingjun Ruan +2 位作者 Huiming Lu Hua Meng Tingting Xu 《Building Simulation》 SCIE EI CSCD 2024年第4期625-638,共14页
During the initial phases of operation following the construction or renovation of existing buildings,the availability of historical power usage data is limited,which leads to lower accuracy in load forecasting and hi... During the initial phases of operation following the construction or renovation of existing buildings,the availability of historical power usage data is limited,which leads to lower accuracy in load forecasting and hinders normal usage.Fortunately,by transferring load data from similar buildings,it is possible to enhance forecasting accuracy.However,indiscriminately expanding all source domain data to the target domain is highly likely to result in negative transfer learning.This study explores the feasibility of utilizing similar buildings(source domains)in transfer learning by implementing and comparing two distinct forms of multi-source transfer learning.Firstly,this study focuses on the Higashita area in Kitakyushu City,Japan,as the research object.Four buildings that exhibit the highest similarity to the target buildings within this area were selected for analysis.Next,the two-stage TrAdaBoost.R^(2) algorithm is used for multi-source transfer learning,and its transfer effect is analyzed.Finally,the application effects of instance-based(IBMTL)and feature-based(FBMTL)multi-source transfer learning are compared,which explained the effect of the source domain data on the forecasting accuracy in different transfer modes.The results show that combining the two-stage TrAdaBoost.R^(2) algorithm with multi-source data can reduce the CV-RMSE by 7.23%compared to a single-source domain,and the accuracy improvement is significant.At the same time,multi-source transfer learning,which is based on instance,can better supplement the integrity of the target domain data and has a higher forecasting accuracy.Overall,IBMTL tends to retain effective data associations and FBMTL shows higher forecasting stability.The findings of this study,which include the verification of real-life algorithm application and source domain availability,can serve as a theoretical reference for implementing transfer learning in load forecasting. 展开更多
关键词 building power load multi-source transfer learning two-stage TrAdaBoost.R2 source domain availability
原文传递
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
10
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Transfer Learning Algorithm Design for Feature Transfer Problem in Motor Imagery Brain-computer Interface
11
作者 Yu Zhang Huaqing Li +3 位作者 Heng Dong Zheng Dai Xing Chen Zhuoming Li 《China Communications》 SCIE CSCD 2022年第2期39-46,共8页
The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal... The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal and the changes of the experimental environment make the feature distribution of the testing set and training set deviates,which reduces the classification accuracy of MI-BCI.In this paper,we propose a Kullback–Leibler divergence(KL)-based transfer learning algorithm to solve the problem of feature transfer,the proposed algorithm uses KL to measure the similarity between the training set and the testing set,adds support vector machine(SVM)classification probability to classify and weight the covariance,and discards the poorly performing samples.The results show that the proposed algorithm can significantly improve the classification accuracy of the testing set compared with the traditional algorithms,especially for subjects with medium classification accuracy.Moreover,the algorithm based on transfer learning has the potential to improve the consistency of feature distribution that the traditional algorithms do not have,which is significant for the application of MI-BCI. 展开更多
关键词 brain-computer interface motor imagery feature transfer transfer learning domain adaptation
下载PDF
Deep learning and transfer learning for device-free human activity recognition:A survey
12
作者 Jianfei Yang Yuecong Xu +2 位作者 Haozhi Cao Han Zou Lihua Xie 《Journal of Automation and Intelligence》 2022年第1期34-47,共14页
Device-free activity recognition plays a crucial role in smart building,security,and human–computer interaction,which shows its strength in its convenience and cost-efficiency.Traditional machine learning has made si... Device-free activity recognition plays a crucial role in smart building,security,and human–computer interaction,which shows its strength in its convenience and cost-efficiency.Traditional machine learning has made significant progress by heuristic hand-crafted features and statistical models,but it suffers from the limitation of manual feature design.Deep learning overcomes such issues by automatic high-level feature extraction,but its performance degrades due to the requirement of massive annotated data and cross-site issues.To deal with these problems,transfer learning helps to transfer knowledge from existing datasets while dealing with the negative effect of background dynamics.This paper surveys the recent progress of deep learning and transfer learning for device-free activity recognition.We begin with the motivation of deep learning and transfer learning,and then introduce the major sensor modalities.Then the deep and transfer learning techniques for device-free human activity recognition are introduced.Eventually,insights on existing works and grand challenges are summarized and presented to promote future research. 展开更多
关键词 Human activity recognition Deep learning transfer learning domain adaptation Action recognition Device-free
下载PDF
Research on Rotating Machinery Fault Diagnosis Based on Improved Multi-target Domain Adversarial Network
13
作者 Haitao Wang Xiang Liu 《Instrumentation》 2024年第1期38-50,共13页
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery... Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization. 展开更多
关键词 multi-target domain domain-adversarial neural networks transfer learning rotating machinery fault diagnosis
下载PDF
An improved transfer learning strategy for short-term cross-building energy prediction usingdata incremental 被引量:2
14
作者 Guannan Li Yubei Wu +5 位作者 Chengchu Yan Xi Fang Tao Li Jiajia Gao Chengliang Xu Zixi Wang 《Building Simulation》 SCIE EI CSCD 2024年第1期165-183,共19页
The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildin... The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildings.Both knowledge transfer learning(KTL)and data incremental learning(DIL)can address the data shortage issue of such buildings.For new building scenarios with continuous data accumulation,the performance of BEP models has not been fully investigated considering the data accumulation dynamics.DIL,which can learn dynamic features from accumulated data adapting to the developing trend of new building time-series data and extend BEP model's knowledge,has been rarely studied.Previous studies have shown that the performance of KTL models trained with fixed data can be further improved in scenarios with dynamically changing data.Hence,this study proposes an improved transfer learning cross-BEP strategy continuously updated using the coarse data incremental(CDI)manner.The hybrid KTL-DIL strategy(LSTM-DANN-CDI)uses domain adversarial neural network(DANN)for KLT and long short-term memory(LSTM)as the Baseline BEP model.Performance evaluation is conducted to systematically qualify the effectiveness and applicability of KTL and improved KTL-DIL.Real-world data from six-type 36 buildings of six types are adopted to evaluate the performance of KTL and KTL-DIL in data-driven BEP tasks considering factors like the model increment time interval,the available target and source building data volumes.Compared with LSTM,results indicate that KTL(LSTM-DANN)and the proposed KTL-DIL(LSTM-DANN-CDI)can significantly improve the BEP performance for new buildings with limited data.Compared with the pure KTL strategy LSTM-DANN,the improved KTL-DIL strategy LSTM-DANN-CDI has better prediction performance with an average performance improvement ratio of 60%. 展开更多
关键词 building energy prediction(BEP) cross-building data incremental learning(DIL) domain adversarial neural network(DANN) knowledge transfer learning(KTL)
原文传递
Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis 被引量:4
15
作者 Yixiao Liao Ruyi Huang +2 位作者 Jipu Li Zhuyun Chen Weihua Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期94-103,共10页
In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagno... In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain,which has been widely used for cross domain fault diagnosis.However,existing methods focus on either marginal distribution adaptation(MDA)or conditional distribution adaptation(CDA).In practice,marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence.In this paper,a dynamic distribution adaptation based transfer network(DDATN)is proposed for cross domain bearing fault diagnosis.DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy(IDMMD)for dynamic distribution adaptation(DDA),which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain.The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods. 展开更多
关键词 Cross domain fault diagnosis Dynamic distribution adaptation Instance-weighted dynamic MMD transfer learning
下载PDF
A Survey on Negative Transfer 被引量:4
16
作者 Wen Zhang Lingfei Deng +1 位作者 Lei Zhang Dongrui Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期305-329,共25页
Transfer learning(TL)utilizes data or knowledge from one or more source domains to facilitate learning in a target domain.It is particularly useful when the target domain has very few or no labeled data,due to annotat... Transfer learning(TL)utilizes data or knowledge from one or more source domains to facilitate learning in a target domain.It is particularly useful when the target domain has very few or no labeled data,due to annotation expense,privacy concerns,etc.Unfortunately,the effectiveness of TL is not always guaranteed.Negative transfer(NT),i.e.,leveraging source domain data/knowledge undesirably reduces learning performance in the target domain,and has been a long-standing and challenging problem in TL.Various approaches have been proposed in the literature to address this issue.However,there does not exist a systematic survey.This paper fills this gap,by first introducing the definition of NT and its causes,and reviewing over fifty representative approaches for overcoming NT,which fall into three categories:domain similarity estimation,safe transfer,and NT mitigation.Many areas,including computer vision,bioinformatics,natural language processing,recommender systems,and robotics,that use NT mitigation strategies to facilitate positive transfers,are also reviewed.Finally,we give guidelines on NT task construction and baseline algorithms,benchmark existing TL and NT mitigation approaches on three NT-specific datasets,and point out challenges and future research directions.To ensure reproducibility,our code is publicized at https://github.com/chamwen/NT-Benchmark. 展开更多
关键词 domain adaptation domain similarity negative transfer positive transfer transfer learning
下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach 被引量:1
17
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(SOH)
下载PDF
因果关系表示增强的跨领域命名实体识别
18
作者 刘小明 曹梦远 +2 位作者 杨关 刘杰 王杭 《计算机工程与应用》 CSCD 北大核心 2024年第18期176-188,共13页
跨领域命名实体识别在现实应用中,尤其在目标领域数据稀缺的小样本场景中具有重要价值。然而,现有方法主要是通过特征表示或模型参数共享实现的跨领域实体能力迁移,未充分考虑由于样本选择偏差而引起的虚假相关性问题。为了解决跨领域... 跨领域命名实体识别在现实应用中,尤其在目标领域数据稀缺的小样本场景中具有重要价值。然而,现有方法主要是通过特征表示或模型参数共享实现的跨领域实体能力迁移,未充分考虑由于样本选择偏差而引起的虚假相关性问题。为了解决跨领域中的虚假相关性问题,提出一种因果关系表示增强的跨领域命名实体识别模型,将源域的语义特征表示与目标域的语义特征表示进行融合,生成一种增强的上下文语义特征表示。通过结构因果模型捕捉增强后的特征变量与标签之间的因果关系。在目标域中应用因果干预和反事实推断策略,提取存在的直接因果效应,从而进一步缓解特征与标签之间的虚假相关性问题。该方法在公共数据集上进行了实验,实验结果得到了显著提高。 展开更多
关键词 跨领域命名实体识别 迁移学习 因果关系 结构因果模型 语义特征表示
下载PDF
选择置信伪标签的迁移学习
19
作者 滕少华 周德根 +1 位作者 滕璐瑶 张巍 《江西师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期31-44,共14页
域适应旨在将标签丰富的源域知识迁移到无标签的目标域.选择性伪标签和标签传播都是域适应的常用方法.然而传统的选择性伪标签以最大类的预测概率标记样本,忽视了其他概率;而且传统的标签传播同等对待不同置信度的标签,这可能导致错误标... 域适应旨在将标签丰富的源域知识迁移到无标签的目标域.选择性伪标签和标签传播都是域适应的常用方法.然而传统的选择性伪标签以最大类的预测概率标记样本,忽视了其他概率;而且传统的标签传播同等对待不同置信度的标签,这可能导致错误标签.因此,该文提出了一种选择置信伪标签(TL-SCP)的迁移学习.首先,在评估伪标签的置信度时兼顾了最大类的预测概率和其他类预测概率;其次,在标签传播过程中尽量保留高置信度标签,并据此指导低置信度标签的更新,借此减少错误标签传播;最后,在4个基准数据集上进行的大量实验验证了提出的模型(TL-SCP)优于现有的模型. 展开更多
关键词 置信伪标签 域适应 伪标签 迁移学习 标签传播
下载PDF
基于同伴辅助学习分类器的部分域自适应方法
20
作者 邱春红 邵晓根 《计算机应用与软件》 北大核心 2024年第1期168-176,共9页
为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入... 为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入一种同伴辅助学习方法,减轻特定目标学习分类器的过度拟合问题。在三个数据集上的实验结果证明该方法不仅减轻了负迁移,而且解决了分类器移位问题。 展开更多
关键词 部分域自适应 负转移 分类器 同伴辅助学习
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部