The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese...In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate...In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values.展开更多
城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该...城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。展开更多
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by the National Natural Science Foundation of China(Grant No.:U2202213)the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant Nos.:202102AE090051-1-01,and 202202AE090001).
文摘In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
基金the National Natural Science Foundation of China(Grant No.62062001)Ningxia Youth Top Talent Project(2021).
文摘In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values.
文摘城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。