期刊文献+
共找到40,270篇文章
< 1 2 250 >
每页显示 20 50 100
Monitoring coal fires in Datong coalfield using multi-source remote sensing data 被引量:12
1
作者 汪云甲 田丰 +2 位作者 黄翌 王坚 魏长婧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3421-3428,共8页
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th... Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point. 展开更多
关键词 LANDSAT unmanned aerial vehicle infrared thermal imager coal fire Datong coalfield remote sensing
下载PDF
The Identification and Geological Significance of Fault Buried in the Gasikule Salt Lake in China based on the Multi-source Remote Sensing Data 被引量:1
2
作者 WANG Junhu ZHAO Yingjun +1 位作者 WU Ding LU Donghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期996-1007,共12页
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great... The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake. 展开更多
关键词 multi-source remote sensing data Gasikule Salt Lake Mangya depression China
下载PDF
Red Tide Information Extraction Based on Multi-source Remote Sensing Data in Haizhou Bay
3
作者 LU Xia JIAO Ming-lian 《Meteorological and Environmental Research》 CAS 2011年第8期78-81,共4页
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR... [Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively. 展开更多
关键词 Haizhou Bay Red tide monitoring region multi-source remote sensing data Secondary filtering method Band ratio method Chlorophyll-a concentration method China
下载PDF
Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data 被引量:1
4
作者 LU Tianqi CHEN Shengbo +3 位作者 TU Yuan YU Yan CAO Yijing JIANG Deyang 《Chinese Geographical Science》 SCIE CSCD 2019年第2期192-201,共10页
Coastal depth is an important research focus of coastal waters and is also a key factor in coastal environment. Dongluo Island in South China Sea was taken as a typical study area. The band ratio model was established... Coastal depth is an important research focus of coastal waters and is also a key factor in coastal environment. Dongluo Island in South China Sea was taken as a typical study area. The band ratio model was established by using measured points and three multispectral images of Landsat-8, SPOT-6(Systeme Probatoire d'Observation de la Terre, No.6) and WorldView-2. The band ratio model with the highest accuracy is selected for the depth inversion respectively. The results show that the accuracy of SPOT-6 image is the highest in the inversion of coastal depth. Meanwhile, analyzing the error of inversion from different depth ranges, the accuracy of the inversion is lower in the range of 0–5 m because of the influence of human activities. The inversion accuracy of 5–10 m is the highest, and the inversion error increases with the increase of water depth in the range of 5–20 m for the three kinds of satellite images. There is no linear relationship between the accuracy of remote sensing water depth inversion and spatial resolution of remote sensing data, and it is affected by performance and parameters of sensor. It is necessary to strengthen the research of remote sensor in order to further improve the accuracy of inversion. 展开更多
关键词 COASTAL WATERS remote sensing QUANTITATIVE INVERSION satellite accuracy comparison
下载PDF
Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images 被引量:1
5
作者 Chenzhong Gao Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期113-124,共12页
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi... This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability. 展开更多
关键词 image registration multi-source remote sensing SCALE-SPACE Harris corner partial intensity invariant feature descriptor(PIIFD)
下载PDF
Accuracy Analysis on the Automatic Registration of Multi-Source Remote Sensing Images Based on the Software of ERDAS Imagine 被引量:1
6
作者 Debao Yuan Ximin Cui +2 位作者 Yahui Qiu Xueyun Gu Li Zhang 《Advances in Remote Sensing》 2013年第2期140-148,共9页
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ... The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed. 展开更多
关键词 multi-source remote sensing Images Automatic REGISTRATION Image Autosync REGISTRATION ACCURACY
下载PDF
Retrieval of urban land surface component temperature using multi-source remote-sensing data
7
作者 郑文武 曾永年 《Journal of Central South University》 SCIE EI CAS 2013年第9期2489-2497,共9页
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a... The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃. 展开更多
关键词 component temperature urban thermal environment multi-source remote sensing thermal infrared remote sensing
下载PDF
A new multi-source remote sensing image sample dataset with high resolution for flood area extraction:GF-FloodNet
8
作者 Yuwei Zhang Peng Liu +3 位作者 Lajiao Chen Mengzhen Xu Xingyan Guo Lingjun Zhao 《International Journal of Digital Earth》 SCIE EI 2023年第1期2522-2554,共33页
Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propo... Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o. 展开更多
关键词 Flood area extraction dataset construction multi-source remote sensing data deep learning
原文传递
Remote Sensing Dynamic Monitoring System for Agricultural Disaster in Henan Province Based on Multi-source Satellite Data
9
作者 刘婷 王来刚 +1 位作者 左守亭 杨春华 《Agricultural Science & Technology》 CAS 2013年第1期155-161,共7页
Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disa... Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disaster monitoring system plat- form of Henan Province based on multi-souroe satellite data was further constructed, which realizes dynamic monitoring of agricultural disasters in Henan Province (drought, flood, snow cover and straw burning). 展开更多
关键词 Agricultural disaster remote sensing monitoring 3S technology System application Henan Province
下载PDF
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
10
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 Feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix multi-source remote sensing image registration CONTOURLET transform
原文传递
Investigating changes in lake systems in the south-central Tibetan Plateau with multi-source remote sensing 被引量:6
11
作者 WU Yanhong ZHANG Xin +2 位作者 ZHENG Hongxing LI Junsheng WANG Zhiying 《Journal of Geographical Sciences》 SCIE CSCD 2017年第3期337-347,共11页
Lakes in the Tibetan Plateau are considered sensitive responders to global warming Variations in physical features of lake systems such as surface area and water level are very helpful in understanding regional respon... Lakes in the Tibetan Plateau are considered sensitive responders to global warming Variations in physical features of lake systems such as surface area and water level are very helpful in understanding regional responses to global warming in recent decades. In this study multi-source remote sensing data were used to retrieve the surface area and water level time series of five inland lakes in the south-central part of the Tibetan Plateau over the past dec- ades. Changes in water level and surface area of the lakes were investigated. The results showed that the water level of three lakes (Puma Yumco, Taro Co, Zhari Namco) increased, with expanding surface area, while the water levels of the other two lakes (Paiku Co, Mapam Yumco) fell, with shrinking area. The water levels of the lakes experienced remarkable changes in 2000-2012 as compared with 1976-1999. Spatially, lakes located at the southern fringe of the Tibetan Plateau showed consistency in water level changes, which was different from lakes in the central Tibetan Plateau. 展开更多
关键词 water level surface area lake system remote sensing Tibetan Plateau
原文传递
Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data 被引量:1
12
作者 Hou Jiang Ling Yao +4 位作者 Ning Lu Jun Qin Tang Liu Yujun Liu Chenghu Zhou 《Energy and AI》 2022年第4期17-28,共12页
Rooftop solar photovoltaics (PV) play increasing role in the global sustainable energy transition. This raises the challenge of accurate and high-resolution geospatial assessment of PV technical potential in policymak... Rooftop solar photovoltaics (PV) play increasing role in the global sustainable energy transition. This raises the challenge of accurate and high-resolution geospatial assessment of PV technical potential in policymaking and power system planning. To address the challenge, we propose a general framework that combines multi-resource satellite images and deep learning models to provide estimates of rooftop PV power generation. We apply deep learning based inversion model to estimate hourly solar radiation based on geostationary satellite images, and automatic segmentation model to extract building footprint from high-resolution satellite images. The framework enables precise survey of available rooftop resources and detailed simulation of power generation on an hourly basis with a spatial resolution of 100 m. The case study in Jiangsu Province demonstrates that the framework is applicable for large areas and scalable between precise locations and arbitrary regions across multiple temporal scales. Our estimates show that rooftop resources across the province have a potential installed capacity of 245.17 GW, corresponding to an annual power generation of 290.66 TWh. This highlights the huge space for carbon emissions reduction through developing rooftop PVs. 展开更多
关键词 Rooftop photovoltaics Building footprints remote sensing Deep learning Solar energy
原文传递
Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar 被引量:1
13
作者 Ze-hou Yang Yong Chen +5 位作者 Chun-li Chen Yong-ke Zhang Ji-hui Dong Tao Peng Xiao-feng Li Ding-fu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期594-601,共8页
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l... An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety. 展开更多
关键词 Differential absorption LIDAR COHERENT Doppler lidar remoting sensing Atmospheric pollution
下载PDF
Air Pollution Exposure Based on Nighttime Light Remote Sensing and Multi-source Geographic Data in Beijing
14
作者 ZHANG Zheyuan WANG Jia +2 位作者 XIONG Nina LIANG Boyi WANG Zong 《Chinese Geographical Science》 SCIE CSCD 2023年第2期320-332,共13页
Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing ai... Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing air pollution only based on AQI monitoring data the fact that the same degree of air pollution is more harmful in more densely populated areas is ignored.In the present study,multi-source data were combined to map the distribution of the AQI and population data,and the analyze their pollution population exposure of Beijing in 2018 was analyzed.Machine learning based on the random forest algorithm was adopted to calculate the monthly average AQI of Beijing in 2018.Using Luojia-1 nighttime light remote sensing data,population statistics data,the population of Beijing in 2018 and point of interest data,the distribution of the permanent population in Beijing was estimated with a high precision of 200 m×200 m.Based on the spatialization results of the AQI and population of Beijing,the air pollution exposure levels in various parts of Beijing were calculated using the population-weighted pollution exposure level(PWEL)formula.The results show that the southern region of Beijing had a more serious level of air pollution,while the northern region was less polluted.At the same time,the population was found to agglomerate mainly in the central city and the peripheric areas thereof.In the present study,the exposure of different districts and towns in Beijing to pollution was analyzed,based on high resolution population spatialization data,it could take the pollution exposure issue down to each individual town.And we found that towns with higher exposure such as Yongshun Town,Shahe Town and Liyuan Town were all found to have a population of over 200000 which was much higher than the median population of townships of51741 in Beijing.Additionally,the change trend of air pollution exposure levels in various regions of Beijing in 2018 was almost the same,with the peak value being in winter and the lowest value being in summer.The exposure intensity in population clusters was relatively high.To reduce the level and intensity of pollution exposure,relevant departments should strengthen the governance of areas with high AQI,and pay particular attention to population clusters. 展开更多
关键词 air quality index(AQI) population pollution exposure nighttime light remote sensing Luojia-1 random forest
下载PDF
CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation
15
作者 Qixiang Tong Zhipeng Zhu +2 位作者 Min Zhang Kerui Cao Haihua Xing 《Computers, Materials & Continua》 SCIE EI 2024年第4期1353-1375,共23页
High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the d... High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks. 展开更多
关键词 Semantic segmentation remote sensing multiscale self-attention
下载PDF
Determining the planting year of navel orange trees in mountainous and hilly areas of southern China:a remote sensing based method
16
作者 LEI Juncheng WANG Sha +1 位作者 WANG Yuandong LUO Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3293-3305,共13页
Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,th... Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination. 展开更多
关键词 Time series remote sensing Google Earth Engine Gannan SUBTROPICS
下载PDF
Remote sensing of quality traits in cereal and arable production systems:A review
17
作者 Zhenhai Li Chengzhi Fan +8 位作者 Yu Zhao Xiuliang Jin Raffaele Casa Wenjiang Huang Xiaoyu Song Gerald Blasch Guijun Yang James Taylor Zhenhong Li 《The Crop Journal》 SCIE CSCD 2024年第1期45-57,共13页
Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and c... Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data. 展开更多
关键词 remote sensing Quality traits Grain protein CEREAL
下载PDF
Quantifying glacier surging and associated lake dynamics in Amu Darya river basin using UAV and remote sensing data
18
作者 SAFAROV Mustafo KANG Shichang +5 位作者 MURODOV Murodkhudzha BANERJEE Abhishek NAVRUZSHOEV Hofiz GULAYOZOV Majid FAZYLOV Ali VOSIDOV Firdavs 《Journal of Mountain Science》 SCIE CSCD 2024年第9期2967-2985,共19页
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab... Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks. 展开更多
关键词 UAV remote sensing Climate change Glacier dynamics Google Earth Engine PAMIR
下载PDF
Using ontology and rules to retrieve the semantics of disaster remote sensing data
19
作者 DONG Yumin LI Ziyang +1 位作者 LI Xuesong LI Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1211-1218,共8页
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster... Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency. 展开更多
关键词 remote sensing data DISASTER ONTOLOGY semantic reasoning
下载PDF
Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
20
作者 Haotang Tan Song Sun +1 位作者 Tian Cheng Xiyuan Shu 《Computers, Materials & Continua》 SCIE EI 2024年第7期661-678,共18页
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ... Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains. 展开更多
关键词 CLOUD TRANSFORMER image segmentation remotely sensed imagery pyramid vision transformer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部