The high summer indoor temperature in agricultural greenhouse is not conducive to crop growth,so it is necessary to cool the greenhouse. In this study,taking the agricultural multi-span greenhouse with strong temperat...The high summer indoor temperature in agricultural greenhouse is not conducive to crop growth,so it is necessary to cool the greenhouse. In this study,taking the agricultural multi-span greenhouse with strong temperature adjustment ability for example,we make an experimental analysis on the temperature changes inside and outside the greenhouse under nine different equipment combinations( fan,skylight,sunshade,sunshade + fan,cooling pad + fan,skylight + fan,sunshade + skylight,sunshade + fan + cooling pad,sunshade + skylight + fan),respectively,and conduct the overall assessment on the measures to cool the summer agricultural greenhouse,in order to provide a reference for selecting a cost-effective cooling method for greenhouse. Tests show that the three treatment modes of fan,sunshade and sunshade + fan almost have no cooling capacity; skylight,sunshade + skylight have cooling capacity,but the effect is slow; cooling pad + fan,sunshade + skylight +fan can reduce the indoor temperature,but the effect is not very good; skylight and fan have good cooling effect; sunshade + fan + cooling pad has obvious cooling effect,which can well meet the cooling needs in the summer greenhouse.展开更多
In order to further understand the changing laws of environmental factors in large multi-span greenhouses under natural ventilation conditions and the internal relations between various environmental factors,and ultim...In order to further understand the changing laws of environmental factors in large multi-span greenhouses under natural ventilation conditions and the internal relations between various environmental factors,and ultimately improve the precision of microclimate regulation of large multi-span greenhouses.Taking the multi-span greenhouse with a small spire structure in the Demonstration Base of Guangdong Agricultural Technology Extension Station as the research object,under the condition of natural ventilation with butterfly-shaped windows,the changes in temperature,humidity,wind speed and solar light intensity of different monitoring planes in the greenhouse were monitored.After analyzing the monitoring data,it was found that:1)The temperature gradient in the vertical direction in the large multi-span greenhouse is more obvious than that in the small greenhouse,and the highest average temperature difference monitored can reach 7.9℃.The velocity field in the multispan greenhouse is always maintained within the range of 0.3-0.4 m/s,and the ambient wind speed has no effect on the airflow speed in the greenhouse.The humidity and speed in the multi-span greenhouse show good uniformity.2)In a large multi-span greenhouse,the secondary radiation generated by the internal shading has less impact on the area near the ground,which can effectively reduce the ground temperature.3)Under the conditions studied in this research,the temperature and humidity in the greenhouse follow the external environment as well,showing that the greenhouse design is reasonable,and the air renewal and heat exchange inside and outside the greenhouse are good during natural ventilation.展开更多
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation...This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.展开更多
In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to f...In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.展开更多
The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible ligh...The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.展开更多
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon...The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particular...Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.展开更多
Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized s...Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.展开更多
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ...The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.展开更多
Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of Ch...Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of China.The country is striving hard to replace it with methane,a cleaner fossil fuel.Although China has rich geological resources of methane as coal bed methane(CBM)reserves,it is quite challenging to utilize them due to low concentration.The CBM is however mainly emitted directly to atmosphere during coal mining,causing waste of the resource and huge contribution to greenhouse effect.The recent work by Yang et al.demonstrated a potential solution to extract low concentration methane selectively from CBM through using MOF materials as sorbents.Such kind of materials and associated separation technology are promising to reduce greenhouse gas emission and promote the methane production capability,which would contribute to carbon neutrality in dual pathways.展开更多
Several long-term studies have provided strong support demonstrating that growing crops under elevated[CO_(2)]can increase photosynthesis and result in an increase in yield,flavour and nutritional content(including bu...Several long-term studies have provided strong support demonstrating that growing crops under elevated[CO_(2)]can increase photosynthesis and result in an increase in yield,flavour and nutritional content(including but not limited to Vitamins C,E and pro-vitamin A).In the case of tomato,increases in yield by as much as 80%are observed when plants are cultivated at 1000 ppm[CO_(2)],which is consistent with current commercial greenhouse productionmethods in the tomato fruit industry.These results provide a clear demonstration of the potential for elevating[CO_(2)]for improving yield and quality in greenhouse crops.The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated[CO_(2)]on fruit yield and fruit nutritional quality.In the final section,we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO_(2) growth conditions.展开更多
In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. St...In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. Studies in lowland cultivations, specifically rice (Oryza sativa) under flood-irrigated conditions, evaluating struvite as a possible alternative phosphorus (P) fertilizer source have been limited. The objective of this study was to evaluate rice response to electrochemically precipitated struvite (ECST) compared to triple superphosphate (TSP), diammonium phosphate (DAP), a chemically precipitated struvite (CPST), and an unamended control (UC), grown under flooded-soil conditions in the greenhouse. Aboveground vegetative dry matter (DM) P concentration was greatest from the UC (0.18%) and was lowest from DAP (0.08%). Root DM Mg concentration was greatest from ECST (0.13%) and was lowest from TSP (0.10%). Grain yield was greatest from DAP (11.2 Mg•ha<sup>−1</sup>) and was lowest from the UC (4.0 Mg•ha<sup>−1</sup>). Grain N, P, K, and Mg uptake were consistently greatest from DAP and consistently lowest from the UC. Grain N concentration was 1.1 times greater from CPST than from ECST, while all other measured rice properties did not differ between the struvite-P sources. The many similar rice responses between struvite materials (ECST and CPST) and TSP and DAP demonstrate that struvite, particularly ECST, is a valid alternative fertilizer-P source for rice-production systems. Further studies should evaluate potential environmental implications (i.e., runoff water quality and greenhouse gas emissions) from struvite use that could affect agricultural sustainability.展开更多
This investigation report got a clear picture of the general situation of the development of greenhouse vegetable industry in Zibo,and found out the existing problems such as frequent harmful weather,few special varie...This investigation report got a clear picture of the general situation of the development of greenhouse vegetable industry in Zibo,and found out the existing problems such as frequent harmful weather,few special varieties and high-grade varieties of greenhouse vegetables,fragmentation of new technology promotion of greenhouse vegetables,low level of intensive seedling raising of vegetables,backward level of facility planting structure and equipment,etc.This paper puts forward the strategies for the future high-quality development of vegetables:promoting the adjustment of vegetable planting structure,rationally arranging vegetables for rotation,strengthening vegetable technical guidance,and innovating vegetable consumption patterns.展开更多
Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban tran...Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.展开更多
The natural ventilation widely used in greenhouses has advantages of saving energy and reducing expense. In order to provide information for climate control of greenhouse, a model was developed to predict the variatio...The natural ventilation widely used in greenhouses has advantages of saving energy and reducing expense. In order to provide information for climate control of greenhouse, a model was developed to predict the variation of air temperature in the naturally ventilated greenhouse equipped with insect-proof screen. Roof ventilation and combined roof and sidewall ventilation were considered in the model. This model was validated against the results of experiments conducted in the greenhouse when the wind was parallel to the gutters. The model parameters were determined by the least squares method. In the used model, effects of wind speed and window opening height on the air temperature variation were analyzed. Comparison between two types of ventilation showed that there existed a necessary ventilation rate which results in air temperature decrease in natural ventilation under special climatic conditions. In our experiments when wind speed was less than 3.2 ms?1, wind had a more gradual effect on greenhouse temperature for roof ventilation, compared with combined roof and sidewall ventilation, which had greater air temperature decrease than roof ventilation only.展开更多
The trend towards smart greenhouses stems from various factors,including a lack of agricultural land area owing to population concentration and housing construction on agricultural land,as well as water shortages.This...The trend towards smart greenhouses stems from various factors,including a lack of agricultural land area owing to population concentration and housing construction on agricultural land,as well as water shortages.This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers.The proposed model uses a one-dimensional convolutional neural network(CNN)deep learning model to control the growth of strategic crops,including cucumber,pepper,tomato,and bean.The proposed model uses the Internet of Things(IoT)to collect data on agricultural operations and then uses this data to control and monitor these operations in real time.This helps to ensure that crops are getting the right amount of fertilizer,water,light,and temperature,which can lead to improved yields and a reduced risk of crop failure.Our dataset is based on data collected from expert farmers,the photovoltaic construction process,agricultural engineers,and research centers.The experimental results showed that the precision,recall,F1-measures,and accuracy of the one-dimensional CNN for the tested dataset were approximately 97.3%,98.2%,97.25%,and 97.56%,respectively.The new smart greenhouse automation system was also evaluated on four crops with a high turnover rate.The system has been found to be highly effective in terms of crop productivity,temperature management and water conservation.展开更多
This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi...This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.展开更多
基金Supported by Scientific and Technological Achievement Extension Project of Experimental Demonstration Station(Base)in Northwest A&F University(TGZX2016-31)Xi'an Science and Technology Project(NC1504 3)
文摘The high summer indoor temperature in agricultural greenhouse is not conducive to crop growth,so it is necessary to cool the greenhouse. In this study,taking the agricultural multi-span greenhouse with strong temperature adjustment ability for example,we make an experimental analysis on the temperature changes inside and outside the greenhouse under nine different equipment combinations( fan,skylight,sunshade,sunshade + fan,cooling pad + fan,skylight + fan,sunshade + skylight,sunshade + fan + cooling pad,sunshade + skylight + fan),respectively,and conduct the overall assessment on the measures to cool the summer agricultural greenhouse,in order to provide a reference for selecting a cost-effective cooling method for greenhouse. Tests show that the three treatment modes of fan,sunshade and sunshade + fan almost have no cooling capacity; skylight,sunshade + skylight have cooling capacity,but the effect is slow; cooling pad + fan,sunshade + skylight +fan can reduce the indoor temperature,but the effect is not very good; skylight and fan have good cooling effect; sunshade + fan + cooling pad has obvious cooling effect,which can well meet the cooling needs in the summer greenhouse.
基金financially supported by the National Key Research and Development Program of China(No.2017YFD0701500)the Open Project of the Key Laboratory of Agricultural Facilities Structural Engineering of the Ministry of Agriculture and Rural Affairs(No.202003).
文摘In order to further understand the changing laws of environmental factors in large multi-span greenhouses under natural ventilation conditions and the internal relations between various environmental factors,and ultimately improve the precision of microclimate regulation of large multi-span greenhouses.Taking the multi-span greenhouse with a small spire structure in the Demonstration Base of Guangdong Agricultural Technology Extension Station as the research object,under the condition of natural ventilation with butterfly-shaped windows,the changes in temperature,humidity,wind speed and solar light intensity of different monitoring planes in the greenhouse were monitored.After analyzing the monitoring data,it was found that:1)The temperature gradient in the vertical direction in the large multi-span greenhouse is more obvious than that in the small greenhouse,and the highest average temperature difference monitored can reach 7.9℃.The velocity field in the multispan greenhouse is always maintained within the range of 0.3-0.4 m/s,and the ambient wind speed has no effect on the airflow speed in the greenhouse.The humidity and speed in the multi-span greenhouse show good uniformity.2)In a large multi-span greenhouse,the secondary radiation generated by the internal shading has less impact on the area near the ground,which can effectively reduce the ground temperature.3)Under the conditions studied in this research,the temperature and humidity in the greenhouse follow the external environment as well,showing that the greenhouse design is reasonable,and the air renewal and heat exchange inside and outside the greenhouse are good during natural ventilation.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
文摘This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.
基金supported by the National Natural Science Foundation of China(42177455)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C02008 and 2022C02058)+1 种基金Central Public-interest Scientific Institution Basal Research Fund(CPSIBRF-CNRRI-202305)the Agricultural Science and Technology Innovation Program(ASTIP)。
文摘In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.
文摘The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金Supported by Key Scientific Research Project in Colleges and Universities of Henan Province(22B180011)Project of Henan Provincial Department of Science and Technology(232102320262)+1 种基金Education and Teaching Reform Research Project of Pingdingshan University(2021-JY55)Key Demonstration Course of Pingdingshan University in 2022——Comprehensive Experiment of Environmental Biology.
文摘The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
文摘Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.
文摘Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.
基金financially supported by the Steel Structure Research and Education Promotion Project of the Japan Iron and Steel Federation in FY2016.
文摘The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.
基金financial support from the National Natural Science Foundation of China(No.22038001,51621003,22108007)。
文摘Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of China.The country is striving hard to replace it with methane,a cleaner fossil fuel.Although China has rich geological resources of methane as coal bed methane(CBM)reserves,it is quite challenging to utilize them due to low concentration.The CBM is however mainly emitted directly to atmosphere during coal mining,causing waste of the resource and huge contribution to greenhouse effect.The recent work by Yang et al.demonstrated a potential solution to extract low concentration methane selectively from CBM through using MOF materials as sorbents.Such kind of materials and associated separation technology are promising to reduce greenhouse gas emission and promote the methane production capability,which would contribute to carbon neutrality in dual pathways.
基金supported by“Realising increased photosynthetic efficiency to increase strawberry yields”(BBSRC,BB/S507192/1)awarded to A.J.S.A.J.S is supported by the Growing Kent and Medway Program,UKRef 107139。
文摘Several long-term studies have provided strong support demonstrating that growing crops under elevated[CO_(2)]can increase photosynthesis and result in an increase in yield,flavour and nutritional content(including but not limited to Vitamins C,E and pro-vitamin A).In the case of tomato,increases in yield by as much as 80%are observed when plants are cultivated at 1000 ppm[CO_(2)],which is consistent with current commercial greenhouse productionmethods in the tomato fruit industry.These results provide a clear demonstration of the potential for elevating[CO_(2)]for improving yield and quality in greenhouse crops.The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated[CO_(2)]on fruit yield and fruit nutritional quality.In the final section,we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO_(2) growth conditions.
文摘In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. Studies in lowland cultivations, specifically rice (Oryza sativa) under flood-irrigated conditions, evaluating struvite as a possible alternative phosphorus (P) fertilizer source have been limited. The objective of this study was to evaluate rice response to electrochemically precipitated struvite (ECST) compared to triple superphosphate (TSP), diammonium phosphate (DAP), a chemically precipitated struvite (CPST), and an unamended control (UC), grown under flooded-soil conditions in the greenhouse. Aboveground vegetative dry matter (DM) P concentration was greatest from the UC (0.18%) and was lowest from DAP (0.08%). Root DM Mg concentration was greatest from ECST (0.13%) and was lowest from TSP (0.10%). Grain yield was greatest from DAP (11.2 Mg•ha<sup>−1</sup>) and was lowest from the UC (4.0 Mg•ha<sup>−1</sup>). Grain N, P, K, and Mg uptake were consistently greatest from DAP and consistently lowest from the UC. Grain N concentration was 1.1 times greater from CPST than from ECST, while all other measured rice properties did not differ between the struvite-P sources. The many similar rice responses between struvite materials (ECST and CPST) and TSP and DAP demonstrate that struvite, particularly ECST, is a valid alternative fertilizer-P source for rice-production systems. Further studies should evaluate potential environmental implications (i.e., runoff water quality and greenhouse gas emissions) from struvite use that could affect agricultural sustainability.
文摘This investigation report got a clear picture of the general situation of the development of greenhouse vegetable industry in Zibo,and found out the existing problems such as frequent harmful weather,few special varieties and high-grade varieties of greenhouse vegetables,fragmentation of new technology promotion of greenhouse vegetables,low level of intensive seedling raising of vegetables,backward level of facility planting structure and equipment,etc.This paper puts forward the strategies for the future high-quality development of vegetables:promoting the adjustment of vegetable planting structure,rationally arranging vegetables for rotation,strengthening vegetable technical guidance,and innovating vegetable consumption patterns.
基金supported by Beijing Natural Science Foundation(J210001)Natural Science Foundation of Hebei Province(E2021210142)Tianjin Natural Science Foundation(21JCZXJC00160).
文摘Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.
基金Project (No. 50175101) supported by the National Natural ScienceFoundation of China
文摘The natural ventilation widely used in greenhouses has advantages of saving energy and reducing expense. In order to provide information for climate control of greenhouse, a model was developed to predict the variation of air temperature in the naturally ventilated greenhouse equipped with insect-proof screen. Roof ventilation and combined roof and sidewall ventilation were considered in the model. This model was validated against the results of experiments conducted in the greenhouse when the wind was parallel to the gutters. The model parameters were determined by the least squares method. In the used model, effects of wind speed and window opening height on the air temperature variation were analyzed. Comparison between two types of ventilation showed that there existed a necessary ventilation rate which results in air temperature decrease in natural ventilation under special climatic conditions. In our experiments when wind speed was less than 3.2 ms?1, wind had a more gradual effect on greenhouse temperature for roof ventilation, compared with combined roof and sidewall ventilation, which had greater air temperature decrease than roof ventilation only.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number RI-44-0450.
文摘The trend towards smart greenhouses stems from various factors,including a lack of agricultural land area owing to population concentration and housing construction on agricultural land,as well as water shortages.This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers.The proposed model uses a one-dimensional convolutional neural network(CNN)deep learning model to control the growth of strategic crops,including cucumber,pepper,tomato,and bean.The proposed model uses the Internet of Things(IoT)to collect data on agricultural operations and then uses this data to control and monitor these operations in real time.This helps to ensure that crops are getting the right amount of fertilizer,water,light,and temperature,which can lead to improved yields and a reduced risk of crop failure.Our dataset is based on data collected from expert farmers,the photovoltaic construction process,agricultural engineers,and research centers.The experimental results showed that the precision,recall,F1-measures,and accuracy of the one-dimensional CNN for the tested dataset were approximately 97.3%,98.2%,97.25%,and 97.56%,respectively.The new smart greenhouse automation system was also evaluated on four crops with a high turnover rate.The system has been found to be highly effective in terms of crop productivity,temperature management and water conservation.
文摘This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.