This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detector...This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detectors embedded in eight polyethylene(PE) spheres of varying diameters. The transport processes of a neutron in the multi-sphere spectrometer are simulated using the Geant4 code. Two sets of response functions of the PE spheres are obtained for calculating the^(241)Am–Be neutron spectrum.Response Function 1 utilizes the thermal neutron scattering model G4 Neutron HPThermal Scattering for neutron energies of ≤4 eV, and Response Function 2 has no thermal treatment. Neutron spectra of an^(241)Am–Be neutron source are measured and compared to those calculated by using the response functions. The results show that response function with thermal treatment is more accurate and closer to the real spectrum.展开更多
In order to realize the on-line real-time measurement of neutron spectrum of ITER fusion,this paper presents a multi-sphere spectrometer system which consists of eight thermal neutron detectors,namely SP9 3He proporti...In order to realize the on-line real-time measurement of neutron spectrum of ITER fusion,this paper presents a multi-sphere spectrometer system which consists of eight thermal neutron detectors,namely SP9 3He proportional counter,embedded in eight different diameter polyethylene spheres.The response function of eight polyethylene spheres of multi-sphere neutron spectrometer was calculated after the simulation of the neutron transport processes in multi-sphere spectrometer by adopting software Geant4.The peak of the response function is in the low energy region for smaller diameter polyethylene sphere.As the polyethylene sphere diameter increased,the peak of the response function moves to the high energy region.The experimental calibration adopts 241Am-Be neutron source.The relative error between normalized data of experiment 4πsolid angle counts and normalized data of simulated detection efficiency of 4in to 8in polyethylene sphere is from 1.152%to 12.222%.The experimental results verify the response function of the simulation.All these results provide a theoretical and experimental basis for solving the on-line real-time neutron spectrum of ITER fusion.展开更多
Compound extremes,whose socioeconomic and ecological impacts are severer than that caused by each event occurring in isolation,have evolved into a hot topic in Earth Science in the past decade.In the context of climat...Compound extremes,whose socioeconomic and ecological impacts are severer than that caused by each event occurring in isolation,have evolved into a hot topic in Earth Science in the past decade.In the context of climate change,many compound extremes have exhibited increasing frequency and intensity,and shown novel fashions of combinations,posing more pressing demands and tougher challenges to scientific research and disaster prevention and response.This article,via a perspective of multi-sphere interactions within the Earth System,systematically reviews the status quo,new scientific understanding,and deficiencies regarding the definition,mechanism,change,attribution,and projection of compound extremes.This study also sorts out existing challenges and outlines a potential roadmap in advancing the study on compound extremes with respect to data requirement,mechanistic diagnosis,numerical modeling,attribution and projection,risk assessment,and adaptive response.Further directions of compound extremes studies and key research topics that warrant multi-disciplinary and multisectoral coordinated efforts are also proposed.Given that climate change has reshaped the type of extremes,a transformation from the traditional single-event perspective to a compound-event perspective is needed for scientific research,disaster prevention and mitigation,and climate change adaptation,calling for bottom-up innovation in research objects,ideas,and methods.This article will add value to promoting the research on compound extremes and interdisciplinary cooperations.展开更多
The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly...The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly affect the Earth's evolutionary trajectory.Despite notable strides in sustainable development practices worldwide,it remains unclear to what extent we have achieved Earth sustainability.Consequently,there is a pressing need to enhance conceptual and methodological frameworks to measure sustainability progress accurately.To address this need,we developed an Earth Vitality Framework that aids in tracking the Earth sustainability progress by considering interactions between spheres,recognizing the equal relationship between humans and nature,and presenting a threshold scheme for all measures.We applied this framework at global and national scales to demonstrate its usefulness.Our findings reveal that the current Earth Vitality Index is 63.74,indicating that the Earth is in a"weak"vitality.Irrational social institutions,unsatisfactory life experiences and the poor state of the biosphere and hydrosphere have remarkably affected the Earth vitality.Additionally,inequality exists between high-income and low-income countries.Although most of the former exhibit poor human-nature interaction,all of them enjoy good human well-being,while the opposite is true for the latter.Finally,we summarize the challenges and possible options for enhancing the Earth vitality in terms of coping with spillover effects,tipping cascades,feedback,and heterogeneity.展开更多
Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petr...Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.展开更多
基金supported by ITER Plan National Major Project(No.2008GB109000)the Introduces Talents Scientific Research Project of Guizhou University(2014,No.32)
文摘This paper is aimed at detecting the neutron spectrum of^(241)Am–Be, a widely used neutron source, with the SP9 ~3He proportional counter, which is a multi-sphere spectrometer system of eight thermal neutron detectors embedded in eight polyethylene(PE) spheres of varying diameters. The transport processes of a neutron in the multi-sphere spectrometer are simulated using the Geant4 code. Two sets of response functions of the PE spheres are obtained for calculating the^(241)Am–Be neutron spectrum.Response Function 1 utilizes the thermal neutron scattering model G4 Neutron HPThermal Scattering for neutron energies of ≤4 eV, and Response Function 2 has no thermal treatment. Neutron spectra of an^(241)Am–Be neutron source are measured and compared to those calculated by using the response functions. The results show that response function with thermal treatment is more accurate and closer to the real spectrum.
基金Supported by ITER Plan National Major Project 2008GB109000
文摘In order to realize the on-line real-time measurement of neutron spectrum of ITER fusion,this paper presents a multi-sphere spectrometer system which consists of eight thermal neutron detectors,namely SP9 3He proportional counter,embedded in eight different diameter polyethylene spheres.The response function of eight polyethylene spheres of multi-sphere neutron spectrometer was calculated after the simulation of the neutron transport processes in multi-sphere spectrometer by adopting software Geant4.The peak of the response function is in the low energy region for smaller diameter polyethylene sphere.As the polyethylene sphere diameter increased,the peak of the response function moves to the high energy region.The experimental calibration adopts 241Am-Be neutron source.The relative error between normalized data of experiment 4πsolid angle counts and normalized data of simulated detection efficiency of 4in to 8in polyethylene sphere is from 1.152%to 12.222%.The experimental results verify the response function of the simulation.All these results provide a theoretical and experimental basis for solving the on-line real-time neutron spectrum of ITER fusion.
基金supported by the National Natural Science Foundation of China(Grant No.42271024)the Science&Technology Development Funding of Chinese Academy of Meteorological Sciences(Grant No.2023KJ015)。
文摘Compound extremes,whose socioeconomic and ecological impacts are severer than that caused by each event occurring in isolation,have evolved into a hot topic in Earth Science in the past decade.In the context of climate change,many compound extremes have exhibited increasing frequency and intensity,and shown novel fashions of combinations,posing more pressing demands and tougher challenges to scientific research and disaster prevention and response.This article,via a perspective of multi-sphere interactions within the Earth System,systematically reviews the status quo,new scientific understanding,and deficiencies regarding the definition,mechanism,change,attribution,and projection of compound extremes.This study also sorts out existing challenges and outlines a potential roadmap in advancing the study on compound extremes with respect to data requirement,mechanistic diagnosis,numerical modeling,attribution and projection,risk assessment,and adaptive response.Further directions of compound extremes studies and key research topics that warrant multi-disciplinary and multisectoral coordinated efforts are also proposed.Given that climate change has reshaped the type of extremes,a transformation from the traditional single-event perspective to a compound-event perspective is needed for scientific research,disaster prevention and mitigation,and climate change adaptation,calling for bottom-up innovation in research objects,ideas,and methods.This article will add value to promoting the research on compound extremes and interdisciplinary cooperations.
基金supported by Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.42121001)Major Program of National Natural Science Foundation of China(Grant No.41590840).
文摘The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly affect the Earth's evolutionary trajectory.Despite notable strides in sustainable development practices worldwide,it remains unclear to what extent we have achieved Earth sustainability.Consequently,there is a pressing need to enhance conceptual and methodological frameworks to measure sustainability progress accurately.To address this need,we developed an Earth Vitality Framework that aids in tracking the Earth sustainability progress by considering interactions between spheres,recognizing the equal relationship between humans and nature,and presenting a threshold scheme for all measures.We applied this framework at global and national scales to demonstrate its usefulness.Our findings reveal that the current Earth Vitality Index is 63.74,indicating that the Earth is in a"weak"vitality.Irrational social institutions,unsatisfactory life experiences and the poor state of the biosphere and hydrosphere have remarkably affected the Earth vitality.Additionally,inequality exists between high-income and low-income countries.Although most of the former exhibit poor human-nature interaction,all of them enjoy good human well-being,while the opposite is true for the latter.Finally,we summarize the challenges and possible options for enhancing the Earth vitality in terms of coping with spillover effects,tipping cascades,feedback,and heterogeneity.
基金Supported by National Key Research and Development Program of China(2017YFC0603101)National Natural Science Foundation of China(42225303,42372162,42102146)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)Basic and Forward-Looking Major Technology Project of China National Petroleum Corporation(2023ZZ0203)。
文摘Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60603023)国家重点基础研究发展规划(973)(the National Grand Fundamental Research 973 Program of China under Grant No.2001CCA00700)