期刊文献+
共找到16,877篇文章
< 1 2 250 >
每页显示 20 50 100
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting
1
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Multi-Stage Multidisciplinary Design Optimization Method for Enhancing Complete Artillery Internal Ballistic Firing Performance
2
作者 Jipeng Xie Guolai Yang +1 位作者 Liqun Wang Lei Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期793-819,共27页
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ... To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method. 展开更多
关键词 ARTILLERY internal ballistics dynamics multi-stage optimization multi-disciplinary design optimization collaborative optimization
下载PDF
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
3
作者 Xintao Wu Chengcheng Li +7 位作者 Ziqi Zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin Zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization
4
作者 Zaihe Yang Shuling Wang +3 位作者 Runhang Zhu Jiao Cui Ji Su Liling Chen 《Energy Engineering》 EI 2024年第3期807-820,共14页
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ... To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems. 展开更多
关键词 multi-stage robust optimization energy storage system regulation methods output uncertainty
下载PDF
Evaluation of Water Losses by Evaporation in the Nakanbe Basin
5
作者 Bayala Alfred Kabre Sayouba +5 位作者 Yonli Hamma Fabien Chesneau Xavier Thierry Sikoudouin Maurice Ky Zeghmati Belkacem Kieno P. Florent Kam Sié 《Atmospheric and Climate Sciences》 2024年第1期29-41,共13页
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e... A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020. 展开更多
关键词 Numerical Study evaporation Meteorological Data Natural Convection BASINS DAMS
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:4
6
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 APPLICATIONS carbon‐based materials evaporATOR photothermal conversion water evaporation
下载PDF
Trace Elements of Multi-stage Minerals and Titanite U-Pb Dating for the Gneisses from Liansan Island,Sulu UHPM Belt 被引量:1
7
作者 SONG Lihao CAO Yuting +4 位作者 XIE Tianhe CHEN Yuyao GAO Yuan WANG Songjie LI Xuping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1640-1656,共17页
Gneisses with anatectic characteristics from the Liansan island in the Sulu UHPM(ultra-high pressure metamorphic)belt were studied for petrography,titanite U-Pb dating and mineral geochemistry.Three origins of garnets... Gneisses with anatectic characteristics from the Liansan island in the Sulu UHPM(ultra-high pressure metamorphic)belt were studied for petrography,titanite U-Pb dating and mineral geochemistry.Three origins of garnets are distinguished:metamorphic garnet,peritectic garnet and anatectic garnet,which are formed in the stages of peak metamorphism,retrograde anatexis and melt crystallization,respectively.The euhedral titanite has a high content of REE and high Th/U ratios,which is interpreted as indicating that it was newly-formed from an anatectic melt.The LA-ICP-MS titanite U-Pb dating yields 214-217 Ma ages for the titanite(melt)crystallization.The distribution of trace elements varies in response to the different host minerals at different stages.At the peak metamorphic stage,Y and HREE are mainly hosted by garnet,Ba and Rb by phengite,Sr,Nb,Ta,Pb,Th,U and LREE by allanite and Y,U and HREE by zircon.During partial melting,Y,Pb,Th,U and REE are released into the melt,which causes a dramatic decline of these element contents in the retrograde minerals.Finally,titanite absorbs most of the Nb,U,LREE and HREE from the melt.Therefore,the different stages of metamorphism have different mineral assemblages,which host different trace elements. 展开更多
关键词 partial melting multi-stage minerals trace element migration titanite U-Pb dating Sulu UHPM belt
下载PDF
Overview of multi-stage charging strategies for Li-ion batteries 被引量:1
8
作者 Muhammad Usman Tahir Ariya Sangwongwanich +1 位作者 Daniel-Ioan Stroe Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期228-241,共14页
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the... To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps. 展开更多
关键词 multi-stage constant current(MSCC)charging Electric vehicles(EVs) Li-ion batteries(LIBs) Fast charging strategies
下载PDF
A Model for Droplet Evaporation
9
作者 Pirooz Mohazzabi Gabrielle A. Richardson Gwendolyn A. Richardson 《Journal of Applied Mathematics and Physics》 2023年第7期1837-1845,共9页
Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more s... Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more sophisticated models for water, such as the kinetic model and the Kulmala model. Findings indicate that complete evaporation of a 1-mm-radius mercury droplet, in a ventilated room at normal temperatures, should take about 1.8 × 10<sup>4</sup> seconds or 5 hours. The findings of this study can be utilized to direct further research in the field of toxin remediation. 展开更多
关键词 evaporation RATE MERCURY DROPLET RADIUS
下载PDF
Multi-Stage Improvement of Marine Predators Algorithm and Its Application
10
作者 Chuandong Qin Baole Han 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3097-3119,共23页
The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented... The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented foraging strategy,it still needs a balance of exploration and exploitation.Therefore,a multi-stage improvement of marine predators algorithm(MSMPA)is proposed in this paper.The algorithm retains the advantage of multistage search and introduces a linear flight strategy in the middle stage to enhance the interaction between predators.Predators further away from the historical optimum are required to move,increasing the exploration capability of the algorithm.In the middle and late stages,the searchmechanism of particle swarmoptimization(PSO)is inserted,which enhances the exploitation capability of the algorithm.This means that the stochasticity is decreased,that is the optimal region where predators jumping out is effectively stifled.At the same time,self-adjusting weight is used to regulate the convergence speed of the algorithm,which can balance the exploration and exploitation capability of the algorithm.The algorithm is applied to different types of CEC2017 benchmark test functions and threemultidimensional nonlinear structure design optimization problems,compared with other recent algorithms.The results show that the convergence speed and accuracy of MSMPA are significantly better than that of the comparison algorithms. 展开更多
关键词 Marine predators algorithm multi-stage strategy structural design optimization
下载PDF
Janus membrane with enhanced interfacial activation for solar evaporation
11
作者 Hao Chen Guangze Pan +3 位作者 Mei Yan Fang Wang Yadong Wu Chongshen Guo 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期1-11,I0002,共12页
Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To ove... Low solar spectrum coverage,high evaporation enthalpy,and undesired salt deposition severely limited the solar-driven interfacial evaporation technology for further sewage purification and seawater desalination.To overcome these problems,we designed an amphiphilic Janus-structured polyaniline(PANI)/ZrC/cellulose acetate(CA)(J-PZCA) membrane.Firstly,the interfacial interaction between PANI and ZrC enhances the photoabsorption and photothermal conversion efficiency.Secondly,low thermal conductivity reduces the heat lost at the interface.Most importantly,ZrC could facilitate interfacial activation,which weakens the intermolecular forces of water by affecting the hydrogen bond.Under 1 solar irradiation(1 sun),the composite membrane exhibits a high evaporation rate of 1.31 kg m^(-2)h^(-1) and an excellent efficiency of 79.4%.In addition,the sewage purification and seawater desalination experiments reveal a remarkable purification capability of J-PZCA membrane.Especially for the treatment of high-concentration salt solution,it realizes a long-term stable evaporation performance due to the excellent salt deposition resistance.Therefore,the J-PZCA membrane constructed in this study provides a new perspective for the design of efficient interfacial evaporation devices. 展开更多
关键词 Interfacial water evaporation Photothermal synergy Interfacial activation ZRC PANI
下载PDF
Facile synthesis of chromium chloride/poly(methyl methacrylate) core/shell nanocapsules by inverse miniemulsion evaporation method and application as delayed crosslinker in secondary oil recovery
12
作者 Jing-Yang Pu Keith P.Johnston +4 位作者 Ping-Keng Wu Muaaz Ahmad Ming-Liang Luo Na Zhang Ju-Tao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期396-406,共11页
Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not lo... Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not long enough for in-depth placement.In this study,we report a novel synthesis method to obtain chromium chloride/poly(methyl methacrylate)(PMMA)nanocapsules which can significantly delay the gelation of HPAM through encapsulating the chromium chloride crosslinker.The chromium chloride-loaded nanocapsules(CreNC)are prepared via a facile inverse miniemulsion evaporation method during which the hydrophobic PMMA polymers,pre-dispersed in an organic solvent,were carefully controlled to precipitate onto stable aqueous miniemulsion droplets.The stable aqueous nanodroplets(W)containing Cr(III)are dispersed in a mixture of organic solvent(O1)with PMMA and nonsolvent medium(O2)to prepare an inverse miniemulsion.With the evaporation of the O1,PMMA forms CreNCs around the aqueous droplets.The CreNCs are readily transferred into water from the organic nonsolvent phase.The CreNCs exhibit the tunable size(358-983 nm),Cr loading(7.1%-19.1%),and Cr entrapment efficiency(11.7%-80.2%),with tunable zeta potentials in different PVA solutions.The CreNCs can delay release of Cr(III)and prolong the gelation time of HPAM up to 27 days. 展开更多
关键词 NANOCAPSULES Inverse miniemulsion evaporation Chromium chloride crosslinker HPAM gelation Secondary oil recovery
下载PDF
Boosting extraction of Pb in contaminated soil via interfacial solar evaporation of multifunctional sponge
13
作者 Pan Wu Xuan Wu +3 位作者 Yida Wang Jingyuan Zhao Haolan Xu Gary Owens 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1459-1468,共10页
Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a s... Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a sodium alginate(SA)impregnated sponge with a surface layer of reduced graphene oxide(rGO)to act as a photothermal conversion medium and then subsequently evaluated for its ability to enhance Pb extraction from contaminated soil driven by interfacial solar evaporation.The SA loaded sponge had a Pb adsorption capacity of 107.4 mg g^(-1).Coating the top surface of the SA sponge with rGO increased water evaporation performance to 1.81 kg m^(-2)h^(-1)in soil media under one sun illumination and with a wind velocity of 2 m s^(-1).Over 12 continuous days of indoor evaporation testing,the Pb extraction efficiency was increased by 22.0%under 1 sun illumination relative to that observed without illumination.Subsequently,Pb extraction was further improved by 48.9%under outdoor evaporation conditions compared to indoor conditions.Overall,this initial work shows the significant potential of interfacial solar evaporation technologies for Pb contaminated soil remediation,which should also be applicable to a variety of other environmental contaminants. 展开更多
关键词 Photothermal materials Interfacial solar evaporation Reduced graphene oxide Pb extraction Soil remediation
下载PDF
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation
14
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 Micro–nano water film Interfacial solar evaporation Solar desalination Artificial neural networks PPy sponge
下载PDF
Controllable growth of wafer-scale PdS and PdS_(2) nanofilms via chemical vapor deposition combined with an electron beam evaporation technique
15
作者 Hui Gao Hongyi Zhou +6 位作者 Yulong Hao Guoliang Zhou Huan Zhou Fenglin Gao Jinbiao Xiao Pinghua Tang Guolin Hao 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期64-71,共8页
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd... Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices. 展开更多
关键词 PDS PdS_(2) NANOFILMS controllable growth chemical vapor deposition electron beam evaporation
下载PDF
Experimental study on the desulfurization and evaporation characteristics of Ca(OH)_(2) droplets
16
作者 Yilin Song Yize Zhang Hao Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期127-135,共9页
The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisper... The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing. 展开更多
关键词 Magnified digital in-line holography evaporation Gas–liquid absorption reaction Ca(OH)_(2) Micro-droplet
下载PDF
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
17
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Chemical Scissors Tailored Nano‑Tellurium with High‑Entropy Morphology for Efficient Foam‑Hydrogel‑Based Solar Photothermal Evaporators
18
作者 Chenyang Xing Zihao Li +4 位作者 Ziao Wang Shaohui Zhang Zhongjian Xie Xi Zhu Zhengchun Peng 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期149-168,共20页
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(... The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions. 展开更多
关键词 TELLURIUM High entropy Electrochemical modification Solar absorption evaporation rate
下载PDF
基于Multi-Stage DEA模型的中国细羊毛生产技术效率实证分析 被引量:4
19
作者 孙致陆 肖海峰 《农业经济与管理》 2013年第4期27-35,共9页
以内蒙古等4省区为例,采用基于规模报酬可变假设的产出主导型Muhi-StageDEA模型,对2001~2010年中国细羊毛生产技术效率进行了测算和分析。研究结果表明,中国细羊毛生产技术效率不高,存在显著的技术效率损失;细羊毛生产在总体上出... 以内蒙古等4省区为例,采用基于规模报酬可变假设的产出主导型Muhi-StageDEA模型,对2001~2010年中国细羊毛生产技术效率进行了测算和分析。研究结果表明,中国细羊毛生产技术效率不高,存在显著的技术效率损失;细羊毛生产在总体上出现了纯技术效率下降和规模效率提高并存的现象,2008年以来纯技术效率提高对细羊毛生产技术效率改善的促进作用逐渐增强,而细羊毛生产规模效率则呈现出了一定的下降趋势;各省区细羊毛生产技术效率存在较大差异,细羊毛生产的规模效率均要高于纯技术效率,规模效率仍是影响各省区细羊毛生产技术效率改善和提高的主要因素。最后提出改善和提高中国细羊毛生产技术效率的政策建议。 展开更多
关键词 multi-stage DEA模型 细羊毛生产 技术效率 规模效率
下载PDF
Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation 被引量:11
20
作者 史阳 杨坤德 +1 位作者 杨益新 马远良 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期193-201,共9页
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on elect... The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consis- tent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean. 展开更多
关键词 horizontal inhomogeneity evaporation duct electromagnetic wave propagation evaporation duct experiment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部