期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells 被引量:1
1
作者 CHEN Ming ZHANG Shicheng +2 位作者 XU Yun MA Xinfang ZOU Yushi 《Petroleum Exploration and Development》 2020年第1期171-183,共13页
To resolve the issue of design for multi-stage and multi-cluster fracturing in multi-zone reservoirs, a new efficient algorithm for the planar 3 D multi-fracture propagation model was proposed. The model considers flu... To resolve the issue of design for multi-stage and multi-cluster fracturing in multi-zone reservoirs, a new efficient algorithm for the planar 3 D multi-fracture propagation model was proposed. The model considers fluid flow in the wellbore-perforation-fracture system and fluid leak-off into the rock matrix, and uses a 3 D boundary integral equation to describe the solid deformation. The solid-fluid coupling equation is solved by an explicit integration algorithm, and the fracture front is determined by the uniform tip asymptotic solutions and shortest path algorithm. The accuracy of the algorithm is verified by the analytical solution of radial fracture, results of the implicit level set algorithm, and results of organic glass fracturing experiment. Compared with the implicit level set algorithm(ILSA), the new algorithm is much higher in computation speed. The numerical case study is conducted based on a horizontal well in shale gas formation of Zhejiang oilfield. The impact of stress heterogeneity among multiple clusters and perforation number distribution on multi-fracture growth and fluid distribution among multiple fractures are analyzed by numerical simulation. The results show that reducing perforation number in each cluster can counteract the effect of stress contrast among perforation clusters. Adjusting perforation number in each cluster can promote uniform flux among clusters, and the perforation number difference should better be 1-2 among clusters. Increasing perforation number in the cluster with high in situ stress is conducive to uniform fluid partitioning. However, uniform fluid partitioning is not equivalent to uniform fracture geometry. The fracture geometry is controlled by the stress interference and horizontal principal stress profile jointly. 展开更多
关键词 horizontal well multi-stage fracturing multi-fracture growth 3D boundary element PLANAR stress heterogeneity PERFORATION optimization
下载PDF
Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir 被引量:1
2
作者 LIU Naizhen ZHANG Zhaopeng +2 位作者 ZOU Yushi MA Xinfang ZHANG Yinuo 《Petroleum Exploration and Development》 2018年第6期1129-1138,共10页
A novel laboratory simulation method for modeling multi-staged fracturing in a horizontal well was established based on a true tri-axial hydraulic fracturing simulation system. Using this method, the influences of net... A novel laboratory simulation method for modeling multi-staged fracturing in a horizontal well was established based on a true tri-axial hydraulic fracturing simulation system. Using this method, the influences of net pressure in hydraulic fracture, stage spacing, perforation parameter, horizontal stress bias and well cementation quality on the propagation geometry of multiple fractures in a tight sandstone formation were studied in detail. The specimen splitting and analogy analysis of fracturing curve patterns reveals: Multiple fractures tend to merge under the condition of high horizontal stress bias and short stage spacing with pre-existing hydraulic fractures under critical closure situation, and the propagation of subsequent fractures is possibly suppressed because of high net pressure in pre-created fractures and asymmetric distribution of fracture width. And the subsequently created fractures are situated in the induced stress decreasing zone due to long stage spacing, leading to weak stress interference, and perforation with intense density and deep penetration facilitates the decrease of initiation fracture pressure. The deflection angle of subsequent fracture and horizontal stress variation tend to be amplified under low horizontal bias with constant net pressure in fractures. The longitudinal fracture is likely to be initiated at the interface of wellbore and concrete sample with poor cementation quality. The initiation fracture pressure of the different stages increases in turn, with the largest increase of 30%. Pressure quickly declines after initiation with low propagation pressure when the transverse hydraulic fracture is formed. The pressure reduces with fluctuation after the initiation of fracture when the fracture deflects, the extension pressure is high, and the fracture formed is tortuous and narrow. There is a violently fluctuant rise of pressure with multiple peak values when longitudinal fracture created, and it is hard to distinguish the features between the initiation stage and propagation stage. 展开更多
关键词 tight SANDSTONE horizontal well multi-staged fracturing PERFORATION net pressure in fracturE stress interference between fracturES fracturE propagation
下载PDF
A Case of Multi-Stage Fracturing Horizontal Well Used in BZ Oilfield in Bohai Bay Low-Permeability Oilfield Development
3
作者 Xiujuan Zhao Chuanjun Wang +2 位作者 Quanlin Wang Jie Tan Wei Yang 《Journal of Geoscience and Environment Protection》 2020年第7期147-154,共8页
BZ oilfield in Bohai Bay of China was a typical offshore low permeability oilfield, which was restricted by many factors such as environment and economy. In this paper, the development characteristics of BZ oilfield w... BZ oilfield in Bohai Bay of China was a typical offshore low permeability oilfield, which was restricted by many factors such as environment and economy. In this paper, the development characteristics of BZ oilfield were summarized in depth, and the new development mode of offshore low-permeability oilfield was explored from reservoir prediction, well spacing and fracturing technology. Taking BZ oilfield as an example, a set of technical system for the effective development of offshore low permeability oilfield had been formed through research, which mainly includes reservoir prediction and evaluation of offshore middle and deep low permeability oilfield, optimization of horizontal well pattern, multi-stage fracturing design of horizontal well and other technologies. The results show that improving the resolution of seismic data, strengthening the analysis of seismic reflection characteristics and carrying out the comprehensive study of seismic geology were the keys to solve the reservoir prediction of offshore low-permeability oil fields. Multi-stage fracturing horizontal well pattern is the main pattern of offshore low-permeability oilfield development. The parameters of multi-stage fracturing horizontal well together affect the development effect. Selecting the optimal fractured horizontal well pattern can greatly improve the development effect. The successful combination and application of new technology system was the foundation and core of conquering offshore low-permeability oil fields. On the basis of understanding the geological characteristics of oil reservoirs, it is an effective means of developing offshore low-permeability oil fields by selecting reasonable production methods, well types and well patterns. Using efficient perforation and fracturing technology to successfully control fracture parameters and form optimal injection and production well pattern was the key to improve low permeability offshore oil fields. 展开更多
关键词 Low Permeability Offshore Oil Field multi-stage fracturing Horizontal Well Pattern
下载PDF
Comparative assessment of mechanical and chemical fluid diversion techniques during hydraulic fracturing in horizontal wells
4
作者 Maunish S.Shah Subhash N.Shah 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3582-3597,共16页
The application of fluid diversion during hydraulic fracturing is an evolving technology and has become popular amongst E&P operators over the past few years.The primary objective of the fluid diversion is to impr... The application of fluid diversion during hydraulic fracturing is an evolving technology and has become popular amongst E&P operators over the past few years.The primary objective of the fluid diversion is to improve hydraulic fracturing treatment by increasing stimulated reservoir volume and improving hydrocarbon recovery.This is possible by achieving any of the following objectives:creating uniform distribution of treatment slurry within the target zone;treating unstimulated and under-stimulated zones;or by increasing fracture density by creating a complex fracture network.The fluid diversion application is also helpful in decreasing the number of stages(by increasing stage length)for multi-stage plug-n-perf(PnP)fracturing treatment.It is also applied to prevent fracture-driven interactions between adjacent wells,which is currently a major issue,especially in shale.In addition,for successful refracturing treatment,the diverter application is essential for isolating the existing fractures and redirecting the treatment slurry to the desired unstimulated zones.The diversion methods can be broadly categorized into the mechanical and chemical diversion.Several established mechanical diversion techniques are frac plugs,expandable casing patches,expandable liners,swellable packers,straddle packer assembly,sand plugs,frac sleeves,perforation ball sealers,and limited entry technique.The different chemical diversion techniques are particulates,fibers,gels,surfactants,perforation pods,and composite diverting.This paper describes the current status of established mechanical and chemical diverter technologies and examines their comparative advantages and challenges.Various techniques are suitable for diverter application,but the technique is selected based on the desired objective and conditions of the wellbore and reservoir.The general guidelines for selecting diversion techniques and operational considerations are also provided in the paper.The diagnosis of diversion treatment plays an essential role in diversion technique selection and optimization of selection parameters for the subsequent treatments.Therefore,the application of conventional surface pressure monitoring techniques and advanced diagnostic tools to evaluate diversion effectiveness are briefly described.Presently no standard laboratory testing method is established for the performance evaluation of diverting agents.Therefore,researchers have implemented various laboratory methods,which are briefly summarized in the paper.Significant insight into the diversion technology and guidelines for its selection and successful implementation is provided to help engineers to increase the effectiveness of hydraulic fracturing treatments.The limitations of individual diversion techniques are clarified,which provide the future scope of research for improvement in various diversion technologies. 展开更多
关键词 Fluid diversion Diverter Diverting agents multi-stage fracturing Hydraulic fracturing Horizontal well
下载PDF
Evolution mechanism of optical fiber strain induced by multi-fracture growth during fracturing in horizontal wells
5
作者 CHEN Ming GUO Tiankui +4 位作者 XU Yun QU Zhanqing ZHANG Shicheng ZHOU Tong WANG Yunpeng 《Petroleum Exploration and Development》 CSCD 2022年第1期211-222,共12页
A forward model for optical fiber strain was established based on a planar 3D multi-fracture model. Then the forward method calculating distributed fiber strain induced by multi-fracture growth was proposed. Based on ... A forward model for optical fiber strain was established based on a planar 3D multi-fracture model. Then the forward method calculating distributed fiber strain induced by multi-fracture growth was proposed. Based on this method, fiber strain evolution during fracturing of the horizontal well was numerically simulated. Fiber strain evolution induced by fracture growth can be divided into three stages: strain increasing, shrinkage convergence, and straight-line convergence, whereas the evolution of fiber strain rate has four stages: strain rate increasing, shrinkage convergence, straight-line convergence, and strain rate reversal after pumping stops. Fiber strain does not flip after pumping stop, while the strain rate flips after pumping stop so that strain rate can reflect injection dynamics. The time when the fracture extends to the fiber and inter-well pressure channeling can be identified by the straight-line convergence band of distributed fiber strain or strain rate, and the non-uniform growth of multiple fractures can be evaluated by using the instants of fractures reaching the fiber monitoring well.When the horizontal section of the fiber monitoring well is within the height range of a hydraulic fracture, the instant of the fracture reaching the fiber can be identified;otherwise, the converging band is not apparent. In multi-stage fracturing, under the influence of stress shadow from previous fracturing stages, the tensile region of fiber strain may not appear, but the fiber strain rate can effectively show the fracture growth behavior in each stage. The evolution law of fiber strain rate in single-stage fracturing can be applied to multi-stage fracturing. 展开更多
关键词 horizontal well multi-stage fracturing optical fiber strain strain distribution forward model identification of multi-fracture growth
下载PDF
Impacts of proppant distribution on development of tight oil reservoirs with threshold pressure gradient
6
作者 Ming Yue Wei-Yao Zhu +3 位作者 Fei-Fei Gou Tian-Ru Song Yu-Chun You Qi-Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期445-457,共13页
Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Bas... Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design. 展开更多
关键词 Proppant distribution Tight oil reservoir multi-stage fractured horizontal well Threshold pressure gradient Moving boundary
下载PDF
Fully coupled fluid-solid productivity numerical simulation of multistage fractured horizontal well in tight oil reservoirs
7
作者 ZHANG Dongxu ZHANG Liehui +1 位作者 TANG Huiying ZHAO Yulong 《Petroleum Exploration and Development》 CSCD 2022年第2期382-393,共12页
A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite... A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite element method was used to determine the numerical solution and the accuracy of the model was verified. On this basis, the model was used to simulate productivity of multistage fractured horizontal wells in tight oil reservoirs. The results show that during the production of tight oil wells, the reservoir region close to artificial fractures deteriorated in physical properties significantly, e.g. the aperture and conductivity of artificial fractures dropped by 52.12% and 89.02% respectively. The simulations of 3000-day production of a horizontal well in tight oil reservoir showed that the predicted productivity by the uncoupled model had an error of 38.30% from that by the fully-coupled model. Apparently, ignoring the influence of fluid-solid interaction effect led to serious deviations of the productivity prediction results. The productivity of horizontal well in tight oil reservoir was most sensitive to the start-up pressure gradient, and second most sensitive to the opening of artificial fractures. Enhancing the initial conductivity of artificial fractures was helpful to improve the productivity of tight oil wells. The influence of conductivity, spacing, number and length of artificial fractures should be considered comprehensively in fracturing design. Increasing the number of artificial fractures unilaterally could not achieve the expected increase in production. 展开更多
关键词 tight oil porous media fully coupled fluid-solid horizontal well multi-stage fracturing reservoir numerical simulation productivity prediction
下载PDF
A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design
8
作者 LEI Qun WENG Dingwei +5 位作者 GUAN Baoshan MU Lijun XU Yun WANG Zhen GUO Ying LI Shuai 《Petroleum Exploration and Development》 2020年第3期632-641,共10页
To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during la... To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly. 展开更多
关键词 tight oil reservoir STIMULATION horizontal well fracture controlling fracturing multi-stage and multi-cluster fracturing fracture parameter
下载PDF
Development and Application of a Production Data Analysis Model for a Shale Gas Production Well 被引量:1
9
作者 Dongkwon Han Sunil Kwon 《Fluid Dynamics & Materials Processing》 EI 2020年第3期411-424,共14页
This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the ... This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the study were based on the analytical and empirical approaches.Its reliability has been confirmed through comparisons with a commercial software.Using transient data relating to multi-stage hydraulic fractured horizontal wells,it was confirmed that the accuracy of the modified hyperbolic method showed an error of approximately 4%compared to the actual estimated ultimate recovery(EUR).On the basis of the developed model,reliable productivity forecasts have been obtained by analyzing field production data relating to wells in Canada.The EUR was computed as 9.6 Bcf using the modified hyperbolic method.Employing the Pow Law Exponential method,the EUR would be 9.4 Bcf.The models developed in this study will allow in the future integration of new analytical and empirical theories in a relatively readily than commercial models. 展开更多
关键词 Production data analysis shale gas multi-stage hydraulic fractured horizontal wells estimated ultimate recovery
下载PDF
Optimization of acid fracturing for a tight carbonate reservoir 被引量:1
10
作者 Aymen Al-Ameri Talal Gamadi 《Petroleum》 CSCD 2020年第1期70-79,共10页
In this study,acid fracturing treatments were simulated for a tight limestone reservoir within a shale formation using FRACPRO software.The purpose was to investigate the optimum acid fracturing design that leads to a... In this study,acid fracturing treatments were simulated for a tight limestone reservoir within a shale formation using FRACPRO software.The purpose was to investigate the optimum acid fracturing design that leads to a higher fracture etched length and width,and higher fracture conductivity.Moreover,the impact of the rock-acid contact time and whether to consider a post-flush or fluids flowback,on the acid fracturing outcomes were also investigated.A simple geological model was constructed which consists of different lithological layers.Different acid fracturing design scenarios were considered starting from a single stage of acid injection to multi-stage treatment.In multi-stage acid treatment,alternate acid-slickwater injection was considered.Plain HCl acids with different concentrations and other acids that are already included in FRACPRO database were used.The results showed that the acid loss during post-flush is among the main problems of the acid fracturing in tight carbonate shale reservoir.For the single stage of acid injection,it is recommended to flow back the acid after well shut-in instead of considering a post-flush stage.The multi-stage alternate acid slickwater injection reduces or even eliminated the acid loss.However,it is recommended to inject a slickwater before well shut-in to reduce the rock-acid contact time,thus reducing the formation damage.The results also showed that the created fracture etched width decreases and the fracture etched length increases as the fracturing stages increase.In this study,because of the low carbonate layer permeability and compressive strength,a two-stage alternate 28%HCl and slickwater injection with a post-flush stage is recommended. 展开更多
关键词 Acid fracturing Tight carbonate Acid loss Low compressive strength Single stage acid fracturing multi-stage acid fracturing
原文传递
Optimization workflow for stimulation-well spacing design in a multiwell pad
11
作者 WANG Junlei JIA Ailin +4 位作者 WEI Yunsheng JIA Chengye QI Yadong YUAN He JIN Yiqiu 《Petroleum Exploration and Development》 2019年第5期1039-1050,共12页
A flow mathematical model with multiple horizontal wells considering interference between wells and fractures was established by taking the variable width conductivity fractures as basic flow units.Then a semi-analyti... A flow mathematical model with multiple horizontal wells considering interference between wells and fractures was established by taking the variable width conductivity fractures as basic flow units.Then a semi-analytical approach was proposed to model the production performance of full-life cycle in well pad and to investigate the effect of fracture length,flow capacity,well spacing and fracture spacing on estimated ultimate recovery(EUR).Finally,an integrated workflow is developed to optimize drilling and completion parameters of the horizontal wells by incorporating the productivity prediction and economic evaluation.It is defined as nested optimization which consists of outer-optimization shell(i.e.,economic profit as outer constraint)and inner-optimization shell(i.e.,fracturing scale as inner constraint).The results show that,when the constraint conditions aren’t considered,the performance of the well pad can be improved by increasing contact area between fracture and formation,reducing interference between fractures/wells,balancing inflow and outflow between fracture and formation,but there is no best compromise between drilling and completion parameters.When only the inner constraint condition is considered,there only exists the optimal fracture conductivity and fracture length.When considering both inner and outer constraints,the optimization decisions including fracture conductivity and fracture length,well spacing,fracture spacing are achieved and correlated.When the fracturing scale is small,small well spacing,wide fracture spacing and short fracture should be adopted.When the fracturing scale is large,big well spacing,small fracture spacing and long fracture should be used. 展开更多
关键词 horizontal WELL multi-staged fracturing fracturE flow capacity fracturE length WELL SPACE fracturE SPACE parameters OPTIMIZATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部