Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s...Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.展开更多
Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection ...Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.展开更多
The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to...The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to make good use of yellow phosphorus slag as well as tackle with environment problems, safety problems, geological hazards, and high-cost issues during mining in Kaiyang Phosphorus Mine Group, Guizhou. The results show that yellow phosphorus slag can be used as the cement substitute for potential coagulation property. Quicklime, hydrated lime, and other alkaline substances can eliminate the high residual phosphorus to improve the initial strength of backfilling body. The recommended proportions (mass ratio) are 1:1 (yellow phosphorus slag:phosphorous gypsum), 1:4:10 (Portland cement:yellow phosphorus slag:phosphorous gypsum), and 1:4:10 (ultra fine powder:yellow phosphorus slag:phosphorous gypsum) with 5wt% of hydrated lime addition, 60wt% of solid materials, no fly ash addition, and good rheological properties. The hydration reaction involves hydration stage, solidifying stage, and strength stage with Ca(OH)2 as the activating agent. The reaction rates of yellow phosphorus slag, Portland cement, and ultrafine powder hydration with the increase of microstructure stability and initial strength.展开更多
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to ob...This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.展开更多
A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recover...A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.展开更多
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr...Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM.展开更多
Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling mate...Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics.展开更多
Solid backfilling mining technology, which decreases the height of fissure zone and caving zone, and alleviates the subsidence, is a new technology for farmland conservation. Based on the situation analysis of farmlan...Solid backfilling mining technology, which decreases the height of fissure zone and caving zone, and alleviates the subsidence, is a new technology for farmland conservation. Based on the situation analysis of farmland destruction in mining area, three ways for farmland protection were proposed. In order to improve the feasibility of this technology, the limited filling materials should be used to increase resources recovery ratio, and then the surplus materials could be backfilled into goaf. An index, namely farmland conservation ability, was put forward to optimize the ways for farmland conservation. At last, the Wanbei coal mine was taken as a case for farmland conservation. It was shown that 3240 t dull coal was substituted and 52 hm2 farmland was conserved by solid backfilling mining in this coal mine.展开更多
Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was bui...Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe.展开更多
Solid backfilling mining can reduce the buildings' damage caused by mining greatly. The reduction of subsidence value, the slow advancing speed and the subsidence caused by backfilling body compaction are the main...Solid backfilling mining can reduce the buildings' damage caused by mining greatly. The reduction of subsidence value, the slow advancing speed and the subsidence caused by backfilling body compaction are the main reasons that solid backfilling mining velocity decreases significantly. Based on the research of mechanism, some principles on subsidence control of solid backfilling mining under buildings were proposed. The equivalent mining height was designed according to the fortification criteria of buildings and their attachment structures, which enables the ground movement and deformation caused by mining to be less than the corresponding fortification criteria.展开更多
In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understandin...In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed.展开更多
To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.Th...To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining.展开更多
The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emiss...The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent.展开更多
This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechan...This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechanics and modern theory of mining-induced pressure, the caving characteristic and roof structure over the GER were analyzed, and the vertical force and the torque on retained entry roof were also derived as the position for the retained entry varies. On the basis of the specific geology in Huainan mining area, the results indicate that a relatively more stable position for retained entry neighbors the hinge point of block A and B, and it also located at a scope ranging from this point to the one-third length of block B in horizontal direction. As to appropriate position for backfilling wall, this study recommends partial- road-in backfilling method for GER. Field trial conducted at panel face 12418 of Xieqiao Mine demonstrates that the recommended width for original entry is 3.6 m and the preferred width proportion between original retained entry and original entry is 75 % or so whereas the avoidable one is 88 % or so. These findings provide qualitative references to the mines which share similar geology as what Huainan mining area characterized.展开更多
Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the t...Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.展开更多
Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in...Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology.展开更多
基金Financial support for this work was provided by the General Program and Youth Fund Program of the National Natural Science Foundation of China(Grant Nos.42377175 and 42002292).
文摘Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.
基金Project(2012BAB13B03)supported by the National Scientific and Technical Supporting Programs Funded of ChinaProject(41104011)supported by the National Natural Science Foundation of China+1 种基金Project(2013QNB07)supported by the Natural Science Funds for Young Scholar of China University of Mining and TechnologyProject(2012LWB32)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.
基金supported by the National Key Technologies R&D Program of China (No.2006BAB02A03)the Mittal Scientific and Technological Innovation Projects of Central South University during 2008 (No.08MX16)
文摘The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to make good use of yellow phosphorus slag as well as tackle with environment problems, safety problems, geological hazards, and high-cost issues during mining in Kaiyang Phosphorus Mine Group, Guizhou. The results show that yellow phosphorus slag can be used as the cement substitute for potential coagulation property. Quicklime, hydrated lime, and other alkaline substances can eliminate the high residual phosphorus to improve the initial strength of backfilling body. The recommended proportions (mass ratio) are 1:1 (yellow phosphorus slag:phosphorous gypsum), 1:4:10 (Portland cement:yellow phosphorus slag:phosphorous gypsum), and 1:4:10 (ultra fine powder:yellow phosphorus slag:phosphorous gypsum) with 5wt% of hydrated lime addition, 60wt% of solid materials, no fly ash addition, and good rheological properties. The hydration reaction involves hydration stage, solidifying stage, and strength stage with Ca(OH)2 as the activating agent. The reaction rates of yellow phosphorus slag, Portland cement, and ultrafine powder hydration with the increase of microstructure stability and initial strength.
文摘This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.
基金Projects 2006BAB02A03 supported by the National Key Technology Research and Development ProgramProjects 2006BA02B05 by the 11th Five Year Key Program for Science and Technology Development of China
文摘A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is l(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, rheoiogical paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 YuarffL good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.
基金Project(SKLCRSM12X01)supported by State Key Laboratory of Coal Resources and Safe Mining,China University of Mining&TechnologyProject(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CXLX13_951)supported by the Research Innovation Program for College Graduates of Jiangsu Province,China
文摘Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM.
基金financial assistance provided by the National Natural Science Foundation of China(No.51304206)China Postdoctoral Science Foundation funded project(No.2015M580492)
文摘Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics.
基金Project(50834004)supported by the National Natural Science Foundation of ChinaProject(LEDM2009B01)supported by Key Laboratory for Land Environment and Disaster Monitoring of SBSM,ChinaProject(SKLGP2010K002)supported by Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,China
文摘Solid backfilling mining technology, which decreases the height of fissure zone and caving zone, and alleviates the subsidence, is a new technology for farmland conservation. Based on the situation analysis of farmland destruction in mining area, three ways for farmland protection were proposed. In order to improve the feasibility of this technology, the limited filling materials should be used to increase resources recovery ratio, and then the surplus materials could be backfilled into goaf. An index, namely farmland conservation ability, was put forward to optimize the ways for farmland conservation. At last, the Wanbei coal mine was taken as a case for farmland conservation. It was shown that 3240 t dull coal was substituted and 52 hm2 farmland was conserved by solid backfilling mining in this coal mine.
基金Project(2008BAB32B03) supported by the National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe.
基金Project(50834004)supported by the National Natural Science Foundation of ChinaProject(LEDM2009B01)supported by Key Laboratory for Land Environment and Disaster Monitoring of SBSMProject(SKLGP2010K002)supported by Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,China
文摘Solid backfilling mining can reduce the buildings' damage caused by mining greatly. The reduction of subsidence value, the slow advancing speed and the subsidence caused by backfilling body compaction are the main reasons that solid backfilling mining velocity decreases significantly. Based on the research of mechanism, some principles on subsidence control of solid backfilling mining under buildings were proposed. The equivalent mining height was designed according to the fortification criteria of buildings and their attachment structures, which enables the ground movement and deformation caused by mining to be less than the corresponding fortification criteria.
文摘In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed.
基金supported by the Youth Funds of National Natural Science Foundation of China(No.52004173)the Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)+2 种基金the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(No.2020L0066)the China Postdoctoral Science Foundation(No.2022M712922)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2021SX-TD001 and 2022SXTD008).
文摘To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining.
基金the National Natural Science Foundation of China(No.51304207)the Fundamental Research Funds for the Key Laboratory of Coal-based CO2 capture and geological storage,China University of Mining and Technology(No.2016A03).
文摘The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent.
文摘This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechanics and modern theory of mining-induced pressure, the caving characteristic and roof structure over the GER were analyzed, and the vertical force and the torque on retained entry roof were also derived as the position for the retained entry varies. On the basis of the specific geology in Huainan mining area, the results indicate that a relatively more stable position for retained entry neighbors the hinge point of block A and B, and it also located at a scope ranging from this point to the one-third length of block B in horizontal direction. As to appropriate position for backfilling wall, this study recommends partial- road-in backfilling method for GER. Field trial conducted at panel face 12418 of Xieqiao Mine demonstrates that the recommended width for original entry is 3.6 m and the preferred width proportion between original retained entry and original entry is 75 % or so whereas the avoidable one is 88 % or so. These findings provide qualitative references to the mines which share similar geology as what Huainan mining area characterized.
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.
基金Financial supports for this work provided by the National Natural Science Foundation of China (No. 51074165)the Key Program of National Natural Science Foundation of China (No.50834004)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF2011-6-B35)
文摘Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology.