期刊文献+
共找到43,362篇文章
< 1 2 250 >
每页显示 20 50 100
Geostatistical seismic inversion and 3D modelling of metric flow units,porosity and permeability in Brazilian presalt reservoir 被引量:1
1
作者 Rodrigo Penna Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1699-1718,共20页
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ... Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow. 展开更多
关键词 Flowunits Geostatistical inversion Presalt reservoir 3D reservoir modelling Petrophysical modelling
下载PDF
Assessing the effects of model parameter assumptions on surface-wave inversion results
2
作者 Xuezhen Zhang Xiaodong Song 《Earthquake Science》 2024年第6期529-545,共17页
Surface-wave inversion is a powerful tool for revealing the Earth's internal structure.However,aside from shear-wave velocity(v_(S)),other parameters can influence the inversion outcomes,yet these have not been sy... Surface-wave inversion is a powerful tool for revealing the Earth's internal structure.However,aside from shear-wave velocity(v_(S)),other parameters can influence the inversion outcomes,yet these have not been systematically discussed.This study investigates the influence of various parameter assumptions on the results of surface-wave inversion,including the compressional and shear velocity ratio(v_(P)/v_(S)),shear-wave attenuation(Q_(S)),density(ρ),Moho interface,and sedimentary layer.We constructed synthetic models to generate dispersion data and compared the obtained results with different parameter assumptions with those of the true model.The results indicate that the v_(P)/v_(S) ratio,Q_(S),and density(ρ) have minimal effects on absolute velocity values and perturbation patterns in the inversion.Conversely,assumptions about the Moho interface and sedimentary layer significantly influenced absolute velocity values and perturbation patterns.Introducing an erroneous Mohointerface depth in the initial model of the inversion significantly affected the v_(S) model near that depth,while using a smooth initial model results in relatively minor deviations.The assumption on the sedimentary layer not only affects shallow structure results but also impacts the result at greater depths.Non-linear inversion methods outperform linear inversion methods,particularly for the assumptions of the Moho interface and sedimentary layer.Joint inversion with other data types,such as receiver functions or Rayleigh wave ellipticity,and using data from a broader period range or higher-mode surface waves,can mitigate these deviations.Furthermore,incorporating more accurate prior information can improve inversion results. 展开更多
关键词 shear-wave velocity model surface-wave inversion Moho interface sedimentary layer non-linear inversion
下载PDF
Layer-Valley Hall Effect under Inversion and Time-Reversal Symmetries
3
作者 赵交交 刘贵斌 +3 位作者 陈鹏 姚裕贵 张广宇 杜罗军 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期88-97,共10页
Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the r... Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the revolution of metrological resistance standard.To date,the Hall effects have mainly focused on a single degree of freedom(Do F),and most of them require the breaking of spatial-inversion and/or time-reversal symmetries.Here we demonstrate a new type of Hall effect,i.e.,layer-valley Hall effect,based on a combined layer-valley Do F characterized by the product of layer and valley indices.The layer-valley Hall effect has a quantum origin arising from the layer-valley contrasting Berry curvature,and can occur in nonmagnetic centrosymmetric crystals with both spatial-inversion and time-reversal symmetries,transcending the symmetry constraints of single Do F Hall effect based on the constituent layer or valley index.Moreover,the layer-valley Hall effect is highly tunable and shows a W-shaped pattern in response to the out-of-plane electric fields.Additionally,we discuss the potential detection approaches and material-specific design principles of layer-valley Hall effect.Our results demonstrate novel Hall physics and open up exotic paradigms for new research direction of layer-valleytronics that exploits the quantum nature of the coupled layer-valley DoF. 展开更多
关键词 quantum inversion CURVATURE
下载PDF
An illustrated guide to:Parsimonious multi-scale full-waveform inversion
4
作者 Andreas Fichtner Solvi Thrastarson +1 位作者 Dirk-Philip van Herwaarden Sebastian Noe 《Earthquake Science》 2024年第6期574-583,共10页
Having been a seemingly unreachable ideal for decades,3-D full-waveform inversion applied to massive seismic datasets has become reality in recent years.Often achieving unprecedented resolution,it has provided new ins... Having been a seemingly unreachable ideal for decades,3-D full-waveform inversion applied to massive seismic datasets has become reality in recent years.Often achieving unprecedented resolution,it has provided new insight into the structure of the Earth,from the upper few metres of soil to the entire globe.Motivated by these successes,the technology is now being translated to medical ultrasound and non-destructive testing.Despite remarkable progress,the computational cost of fullwaveform inversion continues to be a major concern.It limits the amount of data that can be exploited,and it largely inhibits quantitative and comprehensive uncertainty analyses.These notes complement a presentation on recent developments in full-waveform inversion that are intended to reduce computational cost and assimilate more data,thereby improving tomographic resolution.The suite of strategies includes flexible and user-friendly spectral-element simulations,the design of wavefieldadapted meshes that harness prior information on wavefield geometry,dynamic mini-batch optimisation that naturally takes advantage of data redundancies,and collaborative multi-scale updating to jointly constrain crustal and mantle structure. 展开更多
关键词 EARTH MODEL SEISMOLOGY full-waveform inversion
下载PDF
Linearized waveform inversion for vertical transversely isotropic elastic media:Methodology and multi-parameter crosstalk analysis
5
作者 Ke Chen Lu Liu +5 位作者 Li-Nan Xu Fei Hu Yuan Yang Jia-Hui Zuo Le-Le Zhang Yang Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期252-271,共20页
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit... Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs. 展开更多
关键词 ELASTIC ANISOTROPY Least-squares imaging Waveform inversion Computational geophysics
下载PDF
Truncated Gauss-Newton full-waveform inversion of pure quasi-P waves in vertical transverse isotropic media
6
作者 Zhi-Ming Ren Lei Wang Qian-Zong Bao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3102-3124,共23页
Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and a... Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and anisotropy parameter models, which are critical for imaging the long-offset and wideazimuth data. We develop an acoustic anisotropic FWI method based on a simplified pure quasi P-wave(qP-wave) equation, which can be solved efficiently and is beneficial for the subsequent inversion.Using the inverse Hessian operator to precondition the functional gradients helps to reduce the parameter tradeoff in the multi-parameter inversion. To balance the accuracy and efficiency, we extend the truncated Gauss-Newton(TGN) method into FWI of pure qP-waves in vertical transverse isotropic(VTI) media. The inversion is performed in a nested way: a linear inner loop and a nonlinear outer loop.We derive the formulation of Hessian-vector products for pure qP-waves in VTI media based on the Lagrange multiplier method and compute the model update by solving a Gauss-Newton linear system via a matrix-free conjugate gradient method. A suitable preconditioner and the Eisenstat and Walker stopping criterion for the inner iterations are used to accelerate the convergence and avoid prohibitive computational cost. We test the proposed FWI method on several synthetic data sets. Inversion results reveal that the pure acoustic VTI FWI exhibits greater accuracy than the conventional pseudoacoustic VTI FWI. Additionally, the TGN method proves effective in mitigating the parameter crosstalk and increasing the accuracy of anisotropy parameters. 展开更多
关键词 Full waveform inversion Anisotropy Pure quasi-P wave Gauss-Newton HESSIAN
下载PDF
Self-potential inversion based on Attention U-Net deep learning network
7
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network inversion landfill
下载PDF
Characterization of a 4.1 Mb inversion harboring the stripe rust resistance gene YR86 on wheat chromosome 2AL
8
作者 Qiang Cao Zhanwang Zhu +13 位作者 Dengan Xu Jianhui Wu Xiaowan Xu Yan Dong Yingjie Bian Fugong Ding Dehui Zhao Yang Tu Ling Wu Dejun Han Caixia Lan Xianchun Xia Zhonghu He Yuanfeng Hao 《The Crop Journal》 SCIE CSCD 2024年第4期1168-1175,共8页
Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations... Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding. 展开更多
关键词 Adult-plant resistance Chromosomal inversion Puccinia striiformis Triticum aestivum
下载PDF
Probabilistic seismic inversion based on physics-guided deep mixture density network
9
作者 Qian-Hao Sun Zhao-Yun Zong Xin Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1611-1631,共21页
Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learn... Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data. 展开更多
关键词 Deep learning Probabilistic inversion Physics-guided Deep mixture density network
下载PDF
Stochastic seismic inversion and Bayesian facies classification applied to porosity modeling and igneous rock identification
10
作者 Fábio Júnior Damasceno Fernandes Leonardo Teixeira +1 位作者 Antonio Fernando Menezes Freire Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期918-935,共18页
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ... We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability. 展开更多
关键词 Stochastic inversion Bayesian classification Porosity modeling Carbonate reservoirs Igneous rocks
下载PDF
True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization
11
作者 Mei Liang Zhuo Sun +3 位作者 Jiasong Liu Yongsheng Wang Lei Liang Long Zhang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期55-62,共8页
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order... Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values. 展开更多
关键词 Fractional-order particle swarm True-temperature inversion algorithm Multi-wavelength pyrometer
下载PDF
Inversion method of deflection of the vertical based on SWOT wide-swath altimeter data
12
作者 Xin Liu Menghao Song +4 位作者 Chao Li Guihua Hui Jinyun Guo Yongjun Jia Heping Sun 《Geodesy and Geodynamics》 EI CSCD 2024年第4期419-428,共10页
The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian componen... The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed. 展开更多
关键词 SWOT Wide-swath altimeter inversion method of Dov Multi-directional Arabian sea
下载PDF
Full waveform inversion based on hybrid gradient
13
作者 Chuang Xie Zhi-Liang Qin +5 位作者 Jian-Hua Wang Peng Song Heng-Guang Shen Sheng-Qi Yu Ben-Jun Ma Xue-Qin Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1660-1670,共11页
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ... The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability. 展开更多
关键词 Full waveform inversion Hybrid gradient Scattering angle weighted Low-wavenumber component
下载PDF
Surface wave inversion with unknown number of soil layers based on a hybrid learning procedure of deep learning and genetic algorithm
14
作者 Zan Zhou Thomas Man-Hoi Lok Wan-Huan Zhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期345-358,共14页
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef... Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion. 展开更多
关键词 surface wave inversion analysis shear-wave velocity profile deep neural network genetic algorithm
下载PDF
A novel efficient energy absorber with free inversion of a metal foam-filled circular tube
15
作者 Jianxun ZHANG Jinwen BAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期1-14,共14页
In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analyticall... In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone. 展开更多
关键词 metal foam-filled circular tube(MFFCT) free inversion load-carrying capacity energy absorption
下载PDF
Acoustic Velocity-Based Inversion of the Physical Properties of Sea Ice in the Central Arctic Region
16
作者 KONG Yadong XING Junhui +1 位作者 XU Haowei XU Chong 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1213-1220,共8页
Studying the Arctic sea ice contributes to a comprehensive understanding of the climate system in polar regions and offers valuable insights into the interplay between polar climate change and the global climate and e... Studying the Arctic sea ice contributes to a comprehensive understanding of the climate system in polar regions and offers valuable insights into the interplay between polar climate change and the global climate and environment.One of the key research aspects is the investigation of the temperature,salinity,and density parameters of sea ice to obtain essential insights.During the 11th Chinese National Arctic Research Expedition,acoustic velocity was measured on an ice core at a short-term ice station,however,temperature,salinity,and density were not measured.In the present work,we utilized a genetic algorithm to invert these obtained acoustic velocity data to sea ice temperature,salinity,and density parameters on the basis of the relationship between acoustic velocity and the physical properties of Arctic summer sea ice.We validated the effectiveness of this inversion procedure by comparing its findings with those of other researchers.The results indicate that within the normalized depth range of 0.43-0.94,the ranges for temperature,salinity,and density are -0.48--0.29℃,1.63-3.35,and 793.1-904.1 kg m^(-3),respectively. 展开更多
关键词 acoustic velocity Arctic sea ice inversion of sea ice properties genetic algorithm
下载PDF
Tomographic inversion of OBS converted shear waves:case study of profile EW6 in the Dongsha area
17
作者 Genggeng Wen Kuiyuan Wan +5 位作者 Shaohong Xia Xiuwei Ye Huilong Xu Chaoyan Fan Jinghe Cao Shunshan Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第8期13-25,共13页
Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and ge... Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and geophysical properties.Constructing a precise S-wave velocity model is important for deep structural research,and inversion of converted S-waves provides a potential solution.However,the inversion of the converted S-wave remains a weakness because of the complexity of the seismic ray path and the inconsistent conversion interface.In this study,we introduced two travel time correction methods for the S-wave velocity inversion and imaged different S-wave velocity structures in accordance with the corresponding corrected S-wave phases using seismic data of profile EW6 in the northeastern South China Sea(SCS).The two inversion models show a similar trend in velocities,and the velocity difference is<0.15 km/s(mostly in the range of 0–0.1 km/s),indicating the accuracy of the two travel time correction methods and the reliability of the inversion results.According to simulations of seismic ray tracing based on different models,the velocity of sediments is the primary influencing factor in ray tracing for S-wave phases.If the sedimentary layer has high velocities,the near offset crustal S-wave refractions cannot be traced.In contrast,the ray tracing of Moho S-wave reflections was not significantly impacted by the velocity of the sediments.The two travel time correction methods have their own advantages,and the application of different approaches is based on additional requirements.These works provide an important reference for future improvements in converted S-wave research. 展开更多
关键词 converted S-wave S-wave velocity structure inversion ocean bottom seismometer northeastern South China Sea
下载PDF
Multi-scale data joint inversion of minerals and porosity in altered igneous reservoirs—A case study in the South China Sea
18
作者 Xin-Ru Wang Bao-Zhi Pan +2 位作者 Yu-Hang Guo Qing-Hui Wang Yao Guan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期206-220,共15页
There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.Howe... There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations. 展开更多
关键词 Joint inversion Altered igneous rock Element correction method Lithology identification Multi mineral volume model
下载PDF
Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin
19
作者 Shihao Yang Zhaocai Wu +3 位作者 Yinxia Fang Mingju Xu Jialing Zhang Fanlin Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期120-129,共10页
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq... Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided. 展开更多
关键词 3D constrained gravity inversion continent-ocean boundary Mozambique continental margin Moho depth
下载PDF
Improved reservoir characterization by means of supervised machine learning and model-based seismic impedance inversion in the Penobscot field,Scotian Basin
20
作者 Satya Narayan Soumyashree Debasis Sahoo +2 位作者 Soumitra Kar Sanjit Kumar Pal Subhra Kangsabanik 《Energy Geoscience》 EI 2024年第2期183-201,共19页
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v... The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration. 展开更多
关键词 Reservoir characterization Model-based inversion Multilayer perceptron(MLP) IMPEDANCE Petrophysical properties Scotian Basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部