期刊文献+
共找到1,924篇文章
< 1 2 97 >
每页显示 20 50 100
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
1
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio Non-linear regression Artificial neural networks Fuzzy logic
下载PDF
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
2
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM Artificial Neural network Fuzzy logic Average Grain Size and Mechanical Properties
下载PDF
Modified 2 Satisfiability Reverse Analysis Method via Logical Permutation Operator
3
作者 Siti Zulaikha Mohd Jamaludin MohdAsyraf Mansor +3 位作者 Aslina Baharum Mohd Shareduwan Mohd Kasihmuddin Habibah A.Wahab Muhammad Fadhil Marsani 《Computers, Materials & Continua》 SCIE EI 2023年第2期2853-2870,共18页
The effectiveness of the logic mining approach is strongly correlated to the quality of the induced logical representation that represent the behaviour of the data.Specifically,the optimum induced logical representati... The effectiveness of the logic mining approach is strongly correlated to the quality of the induced logical representation that represent the behaviour of the data.Specifically,the optimum induced logical representation indicates the capability of the logic mining approach in generalizing the real datasets of different variants and dimensions.The main issues with the logic extracted by the standard logic mining techniques are lack of interpretability and the weakness in terms of the structural and arrangement of the 2 Satisfiability logic causing lower accuracy.To address the issues,the logical permutation serves as an alternative mechanism that can enhance the probability of the 2 Satisfiability logical rule becoming true by utilizing the definitive finite arrangement of attributes.This work aims to examine and analyze the significant effect of logical permutation on the performance of data extraction ability of the logic mining approach incorporated with the recurrent discrete Hopfield Neural Network.Based on the theory,the effect of permutation and associate memories in recurrent Hopfield Neural Network will potentially improve the accuracy of the existing logic mining approach.To validate the impact of the logical permutation on the retrieval phase of the logic mining model,the proposed work is experimentally tested on a different class of the benchmark real datasets ranging from the multivariate and timeseries datasets.The experimental results show the significant improvement in the proposed logical permutation-based logic mining according to the domains such as compatibility,accuracy,and competitiveness as opposed to the plethora of standard 2 Satisfiability Reverse Analysis methods. 展开更多
关键词 logic mining logical permutation discrete hopfield neural network knowledge extraction
下载PDF
Energy-Efficient Routing Protocol with Multi-Hop Fuzzy Logic for Wireless Networks
4
作者 J.Gobinath S.Hemajothi J.S.Leena Jasmine 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2457-2471,共15页
A Wireless Sensor Network(WSN)becomes a newer type of real-time embedded device that can be utilized for a wide range of applications that make regular networking which appears impracticable.Concerning the energy prod... A Wireless Sensor Network(WSN)becomes a newer type of real-time embedded device that can be utilized for a wide range of applications that make regular networking which appears impracticable.Concerning the energy produc-tion of the nodes,WSN has major issues that may influence the stability of the system.As a result,constructing WSN requires devising protocols and standards that make the most use of constrained capacity,especially the energy resources.WSN faces some issues with increased power utilization and an on going devel-opment due to the uneven energy usage between the nodes.Clustering has proven to be a more effective strategy in this series.In the proposed work,a hybrid meth-od is used for reducing the energy consumption among CHs.A Fuzzy Logic-based clustering protocol FLUC(unequally clustered)and Fuzzy Clustering with Energy-Efficient Routing Protocol(FCERP)are used.A Fuzzy Clustering with Energy Efficient Routing Protocol(FCERP)reduces the WSN power usage and increases the lifespan of the network.FCERP has created a novel cluster-based fuzzy routing mechanism that uses a limit value to combine the clustering and multi-hop routing capabilities.The technique creates uneven groups by using fuz-zy logic with a competitive range to choose the Cluster Head(CH).The input variables include the distance of the nodes from the ground station,concentra-tions,and remaining energy.The proposed FLUC-FCERP reduces the power usage and improves the lifetime of the network compared with the existing algorithms. 展开更多
关键词 Energy consumption LIFETIME wireless sensor network cluster head fuzzy logic unequally clustered fuzzy clustering energy-efficient protocol
下载PDF
Importance Analysis of a Multi-state System Based on Direct Partial Logic Derivatives and Multi-valued Decision Diagrams 被引量:1
5
作者 古莹奎 李晶 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期789-792,共4页
Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because th... Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system. 展开更多
关键词 multi-state system(MSS) importance analysis reliability multi-valued decision diagram(MDD) direct partial logic derivative(DPLD) diesel engine fuel supply system
下载PDF
A Neuro T-Norm Fuzzy Logic Based System
6
作者 Alex Tserkovny 《Journal of Software Engineering and Applications》 2024年第8期638-663,共26页
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi... In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM. 展开更多
关键词 Neuro-Fuzzy System Neural network Fuzzy logic Modus Ponnens Modus Tollens Fuzzy Conditional Inference
下载PDF
A REALIZATION OF FUZZY LOGIC BY A NEURAL NETWORK 被引量:1
7
作者 杨忠 鲍明 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期104-108,共5页
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N... This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model. 展开更多
关键词 fuzzy logic NEURON neural network propagation algorithm fault diagnosis
下载PDF
Investigating the Logical Capability of Graph Neural Networks via the Connection to C_(2)
8
作者 Zhangquan Zhou Shijiao Tang 《Data Intelligence》 EI 2024年第3期720-748,共29页
Graph neural networks(GNNs)have garnered substantial application across a spectrum of real-world scenarios due to their remarkable ability to handle data organized in the form of graphs.Nonetheless,the full extent of ... Graph neural networks(GNNs)have garnered substantial application across a spectrum of real-world scenarios due to their remarkable ability to handle data organized in the form of graphs.Nonetheless,the full extent of GNNs'computational properties and logical capability remains a subject of ongoing investigation.This study undertakes an exploration of the logical capabilities intrinsic to GNNs,approaching the matter from a theoretical standpoint.In this pursuit,a pivotal connection is established between GNNs and a specific fragment of first-order logic known as C_(2),which serves as a logical framework for modeling graph data.Recent research further amplifies this discourse,introducing a subcategory of GNNs named ACR-GNN,illustrating that GNNs are capable of emulating the evaluation process of unary C,formulas.Expanding on these insights,we introduce an innovative version of GNN architectures capable of dealing with general C,formulas.To attain this,we employ a mechanism known as message passing for GNN reconstruction.The proposed GNN adaptations allow for simultaneous updating of node and node pair features,thereby enabling the management of both unary and binary C,formulas.We prove that the proposed models exhibit the equivalent expressiveness to C_(2).This underpins the profound alignment between the logical capability of GNNs and the inherent nature of the logical language C,.We conduct several experiments on both of synthetic and real-world datasets to support our claims.Through the experiments,we verify that our suggested models outperform both ACR-GNN and a commonly used model,GIN,when it comes to evaluating C,formulas. 展开更多
关键词 Graph neural networks logical capabilities C_(2)logical language
原文传递
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
9
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network Fuzzy logic control Weld pool depth Seamtracking
下载PDF
A FUZZY-LOGIC CONTROL ALGORITHM FOR ACTIVE QUEUE MANAGEMENT IN IP NETWORKS 被引量:10
10
作者 Liu Weiyan Zhang Shunyi +1 位作者 Zhang Mu Liu Tao 《Journal of Electronics(China)》 2008年第1期102-107,共6页
Active Queue Management (AQM) is an active research area in the Internet community. Random Early Detection (RED) is a typical AQM algorithm, but it is known that it is difficult to configure its parameters and its ave... Active Queue Management (AQM) is an active research area in the Internet community. Random Early Detection (RED) is a typical AQM algorithm, but it is known that it is difficult to configure its parameters and its average queue length is closely related to the load level. This paper proposes an effective fuzzy congestion control algorithm based on fuzzy logic which uses the pre- dominance of fuzzy logic to deal with uncertain events. The main advantage of this new congestion control algorithm is that it discards the packet dropping mechanism of RED, and calculates packet loss according to a preconfigured fuzzy logic by using the queue length and the buffer usage ratio. Theo- retical analysis and Network Simulator (NS) simulation results show that the proposed algorithm achieves more throughput and more stable queue length than traditional schemes. It really improves a router's ability in network congestion control in IP network. 展开更多
关键词 Congestion control Fuzzy logic AQM (Active Queue Management) RED (Random Early Detection) IP network
下载PDF
Fire monitoring in coal mines using wireless underground sensor network and interval type-2 fuzzy logic controller 被引量:2
11
作者 Sweta Basu Sutapa Pramanik +2 位作者 Sanghamitra Dey Gautam Panigrahi Dipak Kumar Jana 《International Journal of Coal Science & Technology》 EI 2019年第2期274-285,共12页
From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise c... From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis. 展开更多
关键词 Type-2 fuzzy logic UNDERGROUND coal mining system MINE environment FIRE and risk monitoring of MINE WIRELESS sensor networks FIRE Intensity
下载PDF
Quantum Logic Networks for Probabilistic Teleportation of an Arbitrary Three-Particle State 被引量:1
12
作者 QIAN Xue-Mir FANG Jian-Xing ZHU Shi-Qun XI Yong-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期611-614,共4页
The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an... The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed. 展开更多
关键词 probabilistic teleportation arbitrary three-particle state quantum logic networks
下载PDF
Network-based structure optimization method of the anti-aircraft system 被引量:2
13
作者 ZHAO Qingsong DING Junyi +2 位作者 LI Jichao LI Huachao XIA Boyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期374-395,共22页
The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The con... The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities.Firstly, the thought of combat network model(CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength(CAST) logic and influence network(IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network(TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed.Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-Ⅱ(NSGA2) is used to solve the multiobjective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-Ⅲ(NSGA3)and strength Pareto evolutionary algorithm-Ⅱ(SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality. 展开更多
关键词 anti-aircraft system optimization combat network model(CNM) causal strength(CAST)logic influence network(IN) time constraint network(TCN)
下载PDF
Implementation of Intelligent Network Service Logic
14
作者 殷智育 《High Technology Letters》 EI CAS 1996年第2期51-54,共4页
According to the features of Intelligent Network(IN)service logic,a method based ondata table to implement IN Service Logic is proposed.The method supports dynamic additionof IN service logic.
关键词 INTELLIGENT network (IN) SERVICE logic
下载PDF
Quantum Logic Network for Probabilistic Cloning Quantum States
15
作者 GAOTing YANFeng-Li WANGZhi-Xi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第1期73-78,共6页
We construct efficient quantum logic network for probabilistic cloning the quantum states used in imple mented tasks for which cloning provides some enhancement in performance.
关键词 quantum logic network probabilistic cloning quantum state
下载PDF
Intelligent Control of SIRES Using Neural Networks and Fuzzy Logic
16
作者 Zeel Maheshwari Rama Ramakumar 《Journal of Power and Energy Engineering》 2017年第9期156-171,共16页
Development of energy-resources-poor remote rural areas of the world has been discussed by many in the past. Harnessing locally available renewable energy resources as an environmentally friendly option is gaining mom... Development of energy-resources-poor remote rural areas of the world has been discussed by many in the past. Harnessing locally available renewable energy resources as an environmentally friendly option is gaining momentum. Smart Integrated Renewable Energy Systems (SIRES) offer a resilient and economic path to “energize” the area and reach this goal. This paper discusses its intelligent control using neural networks and fuzzy logic. 展开更多
关键词 ENERGIZATION Integrated RENEWABLE Energy Neural network Fuzzy logic Control
下载PDF
Hybrid Designing of a Neural System by Combining Fuzzy Logical Framework and PSVM for Visual Haze-Free Task
17
作者 Hong Hu Liang Pang +1 位作者 Dongping Tian Zhongzhi Shi 《International Journal of Intelligence Science》 2013年第4期145-161,共17页
Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain.... Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree. 展开更多
关键词 Artificial BRAIN Research Brain-Like Computer FUZZY logic NEURAL network Machine Learning HOPFIELD NEURAL network Bounded FUZZY Operator
下载PDF
A NOVEL MULTI-VALUED BAM MODEL WITH IMPROVED ERROR-CORRECTING CAPABILITY
18
作者 Zhang Daoqiang Chen Songcan (College of Info. Sci. Tech., Nanjing Univ. of Aeronautics and Astronautics, Nanjing 210016) 《Journal of Electronics(China)》 2003年第3期220-223,共4页
A Hyperbolic Tangent multi-valued Bi-directional Associative Memory (HTBAM) model is proposed in this letter. Two general energy functions are defined to prove the stability of one class of multi-valued Bi-directional... A Hyperbolic Tangent multi-valued Bi-directional Associative Memory (HTBAM) model is proposed in this letter. Two general energy functions are defined to prove the stability of one class of multi-valued Bi-directional Associative Mernorys(BAMs), with HTBAM being the special case. Simulation results show that HTBAM has a competitive storage capacity and much more error-correcting capability than other multi-valued BAMs. 展开更多
关键词 Bi-directional associative memory Recurrent neural network multi-value
下载PDF
Comparative Analysis between Conventional PI, Fuzzy Logic and Artificial Neural Network Based Speed Controllers of Induction Motor with Considering Core Loss and Stray Load Loss
19
作者 Md. Rifat Hazari Effat Jahan +1 位作者 Mohammad Abdul Mannan Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第1期50-57,共8页
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform... Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM. 展开更多
关键词 Core loss stray load loss PI controller fuzzy logic controller artificial neural network controller
下载PDF
Determining Web Data Currency Based on Markov Logic Network
20
作者 Yan Zhang Rui Zhang 《国际计算机前沿大会会议论文集》 2016年第1期86-87,共2页
This paper proposes a method based on Markov Logic Network (MLN) to determine the time order of entity attribute values. We use the characteristics of web sources’ currency, web sources inter-dependency and attribute... This paper proposes a method based on Markov Logic Network (MLN) to determine the time order of entity attribute values. We use the characteristics of web sources’ currency, web sources inter-dependency and attribute data currency in a certain web source as predicates in MLN. We define five rules (new rules can be added) to infer the currency of different values provided by different sources. On one hand, this method considers currency problem based on entity attribute instead of the entire entity, which is critical to improve the qualityof data provided by Web Integration Systems; on the other hand, this method summarizes characteristics of web sources and web data based on carefully analysis. It is noteworthy that it is not complicate for the MLN model to incorporate new rules, which shows that the proposed method is extensible. 展开更多
关键词 Web DATA integration DATA CURRENCY MARKOV logic network
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部