<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorith...<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div>展开更多
The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural...The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。展开更多
Nowadays, the development of “smart cities” with a high level of quality of life is becoming a prior challenge to be addressed. In this paper, promoting the model shift in railway transportation using tram network t...Nowadays, the development of “smart cities” with a high level of quality of life is becoming a prior challenge to be addressed. In this paper, promoting the model shift in railway transportation using tram network towards more reliable, greener and in general more sustainable transportation modes in a potential world class university is proposed. “Smart mobility” in a smart city will significantly contribute to achieving the goal of a university becoming a world class university. In order to have a regular and reliable rail system on campus, we optimize the route among major stations on campus, using shortest path problem Dijkstra algorithm in conjunction with a computer software called LINDO to arrive at the optimal route. In particular, it is observed that the shortest path from the main entrance gate (Canaan land entrance gate) to the Electrical Engineering Department is of distance 0.805 km.展开更多
Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message i...Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message is split into at least two trivial images called’shares’to cover it.However,such message are always targeted by hackers or dishonest members who attempt to decrypt the message.This can be avoided by not uncovering the secret message without the universal share when it is presented and is typically taken care of,by the trusted party.Hence,in this paper,an optimal and secure double-layered secret image sharing scheme is proposed.The proposed share creation process contains two layers such as threshold-based secret sharing in the first layer and universal share based secret sharing in the second layer.In first layer,Genetic Algorithm(GA)is applied to find the optimal threshold value based on the randomness of the created shares.Then,in the second layer,a novel design of universal share-based secret share creation method is proposed.Finally,Opposition Whale Optimization Algorithm(OWOA)-based optimal key was generated for rectange block cipher to secure each share.This helped in producing high quality reconstruction images.The researcher achieved average experimental outcomes in terms of PSNR and MSE values equal to 55.154225 and 0.79365625 respectively.The average PSNRwas less(49.134475)and average MSE was high(1)in case of existing methods.展开更多
Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidem...Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.展开更多
The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,se...The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,self-study activities are not considered.In this study,an MATLAB-EnergyPlus joint simulation model was constructed based on the Building Controls Virtual Test Bed platform to reduce building energy consumption by optimizing the course schedule and opening strategy of self-study rooms in a holistic way.The following results were obtained by taking a university in Xi’an as an example:(1)The energy saving percentages obtained by timetabling optimization during the heating season examination week,heating season non-examination week,cooling season examination week,and cooling season non-examination week are 35%,29.4%,13.4%,and 13.4%,respectively.(2)Regarding the temporal arrangement,most courses are scheduled in the morning during the cooling season and afternoon during the heating season.Regarding the spatial arrangement,most courses are arranged in the central section of the middle floors of the building.(3)During the heating season,the additional building energy consumption incurred by the opening of self-study rooms decreases when duty heating temperature increases.展开更多
针对5G移动通信中的通用滤波多载波(universal filtered multi-carrier,UFMC)系统中信号的峰均比(peak-to-average power ratio,PAPR)较高的问题,提出了一种改进二进制离散粒子群优化的免疫规划的部分传输序列算法(IPA-IBPSO-PTS)。该...针对5G移动通信中的通用滤波多载波(universal filtered multi-carrier,UFMC)系统中信号的峰均比(peak-to-average power ratio,PAPR)较高的问题,提出了一种改进二进制离散粒子群优化的免疫规划的部分传输序列算法(IPA-IBPSO-PTS)。该算法在IBPSO-PTS算法的基础上,采用差分算法中的变异来避免其在迭代搜索后期出现种群多样性丢失的问题,同时引入了新型免疫规划算法中的疫苗接种和免疫选择操作,进一步提升算法的全局收敛速度。理论分析和仿真表明,提出的IPA-IBPSO-PTS算法能够获得更好的PAPR抑制性能,有效地降低了军事移动通信系统的复杂度和误码率。展开更多
To improve the evolutionary algorithm performance,especially in convergence speed and global optimization ability,a self-adaptive mechanism is designed both for the conventional genetic algorithm(CGA)and the quantum i...To improve the evolutionary algorithm performance,especially in convergence speed and global optimization ability,a self-adaptive mechanism is designed both for the conventional genetic algorithm(CGA)and the quantum inspired genetic algorithm(QIGA).For the self-adaptive mechanism,each individual was assigned with suitable evolutionary parameter according to its current evolutionary state.Therefore,each individual can evolve toward to the currently best solution.Moreover,to reduce the running time of the proposed self-adaptive mechanism-based QIGA(SAM-QIGA),a multi-universe parallel structure was employed in the paper.Simulation results show that the proposed SAM-QIGA have better performances both in convergence and global optimization ability.展开更多
文摘<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div>
基金funded by National Natural Science Foundation of China(Grant No.41972264)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR22E080002)the Observation and Research Station of Geohazards in Zhejiang,Ministry of Natural Resources,China(Grant No.ZJDZGCZ-2021).
文摘The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。
文摘Nowadays, the development of “smart cities” with a high level of quality of life is becoming a prior challenge to be addressed. In this paper, promoting the model shift in railway transportation using tram network towards more reliable, greener and in general more sustainable transportation modes in a potential world class university is proposed. “Smart mobility” in a smart city will significantly contribute to achieving the goal of a university becoming a world class university. In order to have a regular and reliable rail system on campus, we optimize the route among major stations on campus, using shortest path problem Dijkstra algorithm in conjunction with a computer software called LINDO to arrive at the optimal route. In particular, it is observed that the shortest path from the main entrance gate (Canaan land entrance gate) to the Electrical Engineering Department is of distance 0.805 km.
基金supported by RUSA PHASE 2.0,Alagappa University,Karaikudi,India。
文摘Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message is split into at least two trivial images called’shares’to cover it.However,such message are always targeted by hackers or dishonest members who attempt to decrypt the message.This can be avoided by not uncovering the secret message without the universal share when it is presented and is typically taken care of,by the trusted party.Hence,in this paper,an optimal and secure double-layered secret image sharing scheme is proposed.The proposed share creation process contains two layers such as threshold-based secret sharing in the first layer and universal share based secret sharing in the second layer.In first layer,Genetic Algorithm(GA)is applied to find the optimal threshold value based on the randomness of the created shares.Then,in the second layer,a novel design of universal share-based secret share creation method is proposed.Finally,Opposition Whale Optimization Algorithm(OWOA)-based optimal key was generated for rectange block cipher to secure each share.This helped in producing high quality reconstruction images.The researcher achieved average experimental outcomes in terms of PSNR and MSE values equal to 55.154225 and 0.79365625 respectively.The average PSNRwas less(49.134475)and average MSE was high(1)in case of existing methods.
基金supported by the Natural Science Foundation of Zhejiang Province(LY21F020001,LZ22F020005)National Natural Science Foundation of China(62076185,U1809209)+1 种基金Science and Technology Plan Project of Wenzhou,China(ZG2020026)We also acknowledge the respected editor and reviewers'efforts to enhance the quality of this research.
文摘Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.
基金supported by the National Natural Science Foundation of China (52008328)National Key Research and Development Project (2018YFD1100202)+1 种基金the Science and Technology Department of Shaanxi Province (2020SF-393,2018ZDCXL-SF-03-04)the State Key Laboratory of Green Building in Western China (LSZZ202009).
文摘The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,self-study activities are not considered.In this study,an MATLAB-EnergyPlus joint simulation model was constructed based on the Building Controls Virtual Test Bed platform to reduce building energy consumption by optimizing the course schedule and opening strategy of self-study rooms in a holistic way.The following results were obtained by taking a university in Xi’an as an example:(1)The energy saving percentages obtained by timetabling optimization during the heating season examination week,heating season non-examination week,cooling season examination week,and cooling season non-examination week are 35%,29.4%,13.4%,and 13.4%,respectively.(2)Regarding the temporal arrangement,most courses are scheduled in the morning during the cooling season and afternoon during the heating season.Regarding the spatial arrangement,most courses are arranged in the central section of the middle floors of the building.(3)During the heating season,the additional building energy consumption incurred by the opening of self-study rooms decreases when duty heating temperature increases.
文摘针对5G移动通信中的通用滤波多载波(universal filtered multi-carrier,UFMC)系统中信号的峰均比(peak-to-average power ratio,PAPR)较高的问题,提出了一种改进二进制离散粒子群优化的免疫规划的部分传输序列算法(IPA-IBPSO-PTS)。该算法在IBPSO-PTS算法的基础上,采用差分算法中的变异来避免其在迭代搜索后期出现种群多样性丢失的问题,同时引入了新型免疫规划算法中的疫苗接种和免疫选择操作,进一步提升算法的全局收敛速度。理论分析和仿真表明,提出的IPA-IBPSO-PTS算法能够获得更好的PAPR抑制性能,有效地降低了军事移动通信系统的复杂度和误码率。
基金supported by the National Natural Science Foundation of China (61473179)the Natural Science Foundation of Shandong Province (ZR2016FM18 ZR2017LF004)+2 种基金the Project of Shandong Province Higher Education Science and Technology Program (J16LN20)the Youth Innovation Team Development Plan of Shandong Province Higher Enducation (2019KJN048)the International Cooperation Training Project of Shandong Province (2016)
文摘To improve the evolutionary algorithm performance,especially in convergence speed and global optimization ability,a self-adaptive mechanism is designed both for the conventional genetic algorithm(CGA)and the quantum inspired genetic algorithm(QIGA).For the self-adaptive mechanism,each individual was assigned with suitable evolutionary parameter according to its current evolutionary state.Therefore,each individual can evolve toward to the currently best solution.Moreover,to reduce the running time of the proposed self-adaptive mechanism-based QIGA(SAM-QIGA),a multi-universe parallel structure was employed in the paper.Simulation results show that the proposed SAM-QIGA have better performances both in convergence and global optimization ability.