In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic stre...In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.展开更多
Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stre...Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical P...Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer.The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years,while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer.The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer).The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere,which is proposed as a possible reason for southward displacement of the EAJS in June.The late spring-summer warm SST anomaly in the tropical eastern Pacific,however,may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.展开更多
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t...The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).展开更多
A new physical structure of vortical flow, i.e., tubular limiting stream surface(TLSS), is reported. It is defined as a general mathematical structure for the physical flow field in the neighborhood of a singularity, ...A new physical structure of vortical flow, i.e., tubular limiting stream surface(TLSS), is reported. It is defined as a general mathematical structure for the physical flow field in the neighborhood of a singularity, and has a close relationship with limit cycles.The TLSS is a tornado-like structure, which separates a vortex into two regions, i.e., the inner region near the vortex axis and the outer region further away from the vortex axis.The flow particles in these two regions can approach to(or leave) the TLSS, but never could reach it.展开更多
In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Bas...In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Based on monitoring data, the effects of Iongwall mining on surface stream water were analyzed. The results demonstrate that Iongwall mining has effects on the surface stream water; and the stream water would be lost and decrease due to Iongwall mining but never go into underground through fractured zone. Also, the mechanism of water loss due to Iongwall mining was presented. The stream water can go into the surface cracks in the intersection of stream and surface cracks, longwall mining subsidence can change the surface stream slope and the downstream water flowing status. The results also show the effects of Iongwall mining on stream water are temporary and about one or two years later, surface stream water can be recovered.展开更多
Nowadays, by the increasing attention to environment and high rate of fuel production, recycling of purge gas as reactant to a reactor is highly considered. In this study, it is proposed that the purge gases of methan...Nowadays, by the increasing attention to environment and high rate of fuel production, recycling of purge gas as reactant to a reactor is highly considered. In this study, it is proposed that the purge gases of methanol production unit, which are approximately15.018 t·h^(-1) in the largest methanol production complexes in the world, can be recycled to the reactor and utilized for increasing the production rate. Purge gas streams contain 63% hydrogen,20% carbon monoxide and carbon dioxide as reactants and 17% nitrogen and methane as inert. The recycling effect of beneficial components on methanol production rate has been investigated in this study. Simulation results show that methanol production enhances by recycling just hydrogen, carbon dioxide and carbon monoxide which is an effective configuration among the others. It is named as Desired Recycle Configuration(DRC) in this study. The optimum fraction of returning purge gas is calculated via one dimensional modeling of process and Response Surface Methodology(RSM) is applied to maximize the methanol flow rate and minimize the carbon dioxide flow rate. Simulation results illustrate that methanol flow rate increases by 0.106% in DRC compared to Conventional Recycle Configuration(CRC) which therefore shows the superiority of applying DRC to CRC.展开更多
Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave break...Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation is solved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).展开更多
Surface melt has great impacts on the Greenland Ice Sheet (GrlS) mass balance and thereby has become the focus of significant GrlS research in recent years. The production, transport, and release processes of surfac...Surface melt has great impacts on the Greenland Ice Sheet (GrlS) mass balance and thereby has become the focus of significant GrlS research in recent years. The production, transport, and release processes of surface meltwater are the keys to understanding the poten- tial impacts of the GrlS surface melt. These hydrological processes can elucidate the following scientific questions: How much melt- water is produced atop the GrlS? What are the characteristics of the meltwater-formed supraglacial hydrological system? How does the meltwater influence the GrlS motion? The GrlS supraglacial hydrology has a number of key roles and yet continues to be poorly understood or documented. This paper summarizes the current understanding of the GrlS surface melt, emphasizing the three essential supraglacial hydrological processes: (1) meltwater production: surface melt modeling is an important approach to acquire surface melt information, and areas, depths, and volumes of supraglacial lakes extracted from remotely sensed imagery can also provide surface melt information; (2) meltwater transport: the spatial distributions of supraglacial lakes, supraglacial sarams, moulins, and crevasses demonstrate the characteristics of the supraglacial hydrological system, revealing the meltwater transport process; and (3) meltwater release: the release of meltwater into the englacial and the subglacial ice sheet has important but undetermined impacts on the GrlS motion. The correlation between surface runoff and the GrlS motion speed is employed to understand these influences.展开更多
A fine-grid model (1/6) covering the South China Sea (SCS), East China Sea and Ja-pan/East Sea, which is embedded into a coarse-grid (3) global model, was established to study the SCS circulation. In the present paper...A fine-grid model (1/6) covering the South China Sea (SCS), East China Sea and Ja-pan/East Sea, which is embedded into a coarse-grid (3) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Com-parison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water in-trudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS South-ern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.展开更多
The relationships between the 200-hPa westerly jet stream anomalies over the East Asian coastal waterwestern Pacific (WPJS), and the oceanic surface heating and synoptic-scale transient eddy (STE) activity anomali...The relationships between the 200-hPa westerly jet stream anomalies over the East Asian coastal waterwestern Pacific (WPJS), and the oceanic surface heating and synoptic-scale transient eddy (STE) activity anomalies over the North Pacific in wintertime are examined by using ERA-40 and NCEP/NCAR reanalysis data. The analysis demonstrates that the surface heating and the STE anomalies have different patterns, corresponding to the three WPJS anomalous modes, respectively. In the first WPJS anomalous mode, the WPJS main part shows no robust anomaly. The anomalous westerly wind, occurring over the mid-latitude central-eastern Pacific past the date line is associated with the anomalous heating presenting both in the tropical central-eastern Pacific past the date line and the center of the North Pacific basin. Meanwhile, the STE anomaly appears around the region of the anomalous zonal wind. The fluctuation in jet strength shown in the second WPJS mode is strongly related to the heating anomaly in the Kuroshio Current region and the STE anomaly in the jet exit region. The third mode demonstrates a northward/southward shift of the WPJS, which has a statistical connection with a south-north dipolar pattern of the heating anomaly in the western North Pacific separated at 35°N. Meanwhile, the STE spatial displacement is in conjunction with jet shifts in the same direction. The heating anomaly has a close connection with the atmospheric circulation, and thus changes the mid-latitude baroclinicity, leading to the STE anomaly, which then reinforces the WPJS anomaly via internal atmospheric dynamics.展开更多
In five-axis machining,tool orientation above a blade stream surface may lead to tool collision and a decrease in workpiece rigidity.Hence,collisionless tool orientation smoothing(TOS)becomes an important issue.On the...In five-axis machining,tool orientation above a blade stream surface may lead to tool collision and a decrease in workpiece rigidity.Hence,collisionless tool orientation smoothing(TOS)becomes an important issue.On the basis of a constant scallop height tool path,the triangular facets in the faces,vertices format are constructed from cutter contact(CC)using the Voronoi incremental algorithm.The cutter location(CL)points candidate set is represented by an oblique elliptic cone whose vertex lies at CC using NURBS envelope.Whether the CL point is above its CC is judged by the dot product between the normal vector and the point on triangulation nearest to the CL point.The curvatures at CC are obtained by fitting a moving least square(MLS) quadratic patch to the local neighborhood of a vertex and calculating eigenvectors and eigenvalues of the Hessian matrix.Triangular surface elastic energy is employed as the weight in selection from the NURBS envelope.The collision is judged by NURBS surface intersection.TOS can then be expressed by selecting a CL point for each CC point and converted into a numerical control(NC)code automatically according to the postprocessor type of the machine center.The proposed method is verified by finishing of a cryogenic turboexpander impeller of air separation equipment.展开更多
Aljustrel mines were classified as having high environmental hazard due to their large tailings volume and high metal concentrations in waters and sediments.To assess acid mine drainage impacted systems whose environm...Aljustrel mines were classified as having high environmental hazard due to their large tailings volume and high metal concentrations in waters and sediments.To assess acid mine drainage impacted systems whose environmental conditions change quickly,the use of biological indicators with short generation time such as diatoms is advantageous.This study combined geochemical and diatom data,whose results were highlighted in 3 groups:Group 1,with low p H(1.9–5.1)and high metal/metalloid(Al,As,Cd,Co,Cu,Fe,Mn,Ni,Pb,Zn;0.65–1032 mg/L)and SO4(405–39124 mg/L)concentrations.An acidophilic species,Pinnularia aljustrelica,was perfectly adapted to the adverse conditions;in contrast,teratological forms of Eunotia exigua were found,showing that metal toxicity affected this species.The low availability of metals/metalloids in sediments of this group indicates that metals/metalloids of the exchangeable fractions had been solubilized,which in fact enables metal/metalloid diatom uptake and consequently the occurrence of teratologies;Group 2,with sites of near neutral p H(5.0–6.8)and intermediate metal/metalloid(0.002–6 mg/L)and SO4(302–2179 mg/L)concentrations;this enabled the existence of typical species of uncontaminated streams(Brachysira neglectissima,Achnanthidium minutissimum);Group 3,with samples from unimpacted sites,showing low metal/metalloid(0–0.8 mg/L)and SO4(10–315 mg/L)concentrations,high pH(7.0–8.4)and Cl contents(10–2119 mg/L)and the presence of brackish to marine species(Entomoneis paludosa).For similar conditions of acidity,differences in diversity,abundance and teratologies of diatoms can be explained by the levels of metals/metalloids.展开更多
文摘In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.
基金Project(KLVF-2007-4) supported by Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment,Ministry of Education,Chongqing University,ChinaProject(CSTC2008CE9095) supported by Chongqing Science and Technology Commission,ChinaProject(KJ080803) supported by Chongqing Municipal Education Commission,China
文摘Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
基金supported by the National Natural Science Foundation of China (Grant No. 40810059005)
文摘Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer.The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years,while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer.The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer).The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere,which is proposed as a possible reason for southward displacement of the EAJS in June.The late spring-summer warm SST anomaly in the tropical eastern Pacific,however,may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).
基金Project supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘A new physical structure of vortical flow, i.e., tubular limiting stream surface(TLSS), is reported. It is defined as a general mathematical structure for the physical flow field in the neighborhood of a singularity, and has a close relationship with limit cycles.The TLSS is a tornado-like structure, which separates a vortex into two regions, i.e., the inner region near the vortex axis and the outer region further away from the vortex axis.The flow particles in these two regions can approach to(or leave) the TLSS, but never could reach it.
基金Supported by Pennsylvania Service Corporation at Waynesburg, Pennsylvania, USA the 0utstanding Youth Science Foundation of Henan Province (0612002100), China.
文摘In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Based on monitoring data, the effects of Iongwall mining on surface stream water were analyzed. The results demonstrate that Iongwall mining has effects on the surface stream water; and the stream water would be lost and decrease due to Iongwall mining but never go into underground through fractured zone. Also, the mechanism of water loss due to Iongwall mining was presented. The stream water can go into the surface cracks in the intersection of stream and surface cracks, longwall mining subsidence can change the surface stream slope and the downstream water flowing status. The results also show the effects of Iongwall mining on stream water are temporary and about one or two years later, surface stream water can be recovered.
文摘Nowadays, by the increasing attention to environment and high rate of fuel production, recycling of purge gas as reactant to a reactor is highly considered. In this study, it is proposed that the purge gases of methanol production unit, which are approximately15.018 t·h^(-1) in the largest methanol production complexes in the world, can be recycled to the reactor and utilized for increasing the production rate. Purge gas streams contain 63% hydrogen,20% carbon monoxide and carbon dioxide as reactants and 17% nitrogen and methane as inert. The recycling effect of beneficial components on methanol production rate has been investigated in this study. Simulation results show that methanol production enhances by recycling just hydrogen, carbon dioxide and carbon monoxide which is an effective configuration among the others. It is named as Desired Recycle Configuration(DRC) in this study. The optimum fraction of returning purge gas is calculated via one dimensional modeling of process and Response Surface Methodology(RSM) is applied to maximize the methanol flow rate and minimize the carbon dioxide flow rate. Simulation results illustrate that methanol flow rate increases by 0.106% in DRC compared to Conventional Recycle Configuration(CRC) which therefore shows the superiority of applying DRC to CRC.
基金This project was supported by the Fok Ying Tung Education Foundation(Grant No.81068)and the China-Australia Institutional Links Project.
文摘Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation is solved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).
基金supported by the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education and the Graduate Education Innovation Project of Jiangsu Province(CXLX12-0039)
文摘Surface melt has great impacts on the Greenland Ice Sheet (GrlS) mass balance and thereby has become the focus of significant GrlS research in recent years. The production, transport, and release processes of surface meltwater are the keys to understanding the poten- tial impacts of the GrlS surface melt. These hydrological processes can elucidate the following scientific questions: How much melt- water is produced atop the GrlS? What are the characteristics of the meltwater-formed supraglacial hydrological system? How does the meltwater influence the GrlS motion? The GrlS supraglacial hydrology has a number of key roles and yet continues to be poorly understood or documented. This paper summarizes the current understanding of the GrlS surface melt, emphasizing the three essential supraglacial hydrological processes: (1) meltwater production: surface melt modeling is an important approach to acquire surface melt information, and areas, depths, and volumes of supraglacial lakes extracted from remotely sensed imagery can also provide surface melt information; (2) meltwater transport: the spatial distributions of supraglacial lakes, supraglacial sarams, moulins, and crevasses demonstrate the characteristics of the supraglacial hydrological system, revealing the meltwater transport process; and (3) meltwater release: the release of meltwater into the englacial and the subglacial ice sheet has important but undetermined impacts on the GrlS motion. The correlation between surface runoff and the GrlS motion speed is employed to understand these influences.
基金the China Major State Basic Research Program (Grant No. G1999043808) the Youth Fund of National 863 Project (Grant No. 2002AA639350) the National Natural Science Foundation of China (Grant No. 49876010) and the Innovation Program of the Chinese Aca
文摘A fine-grid model (1/6) covering the South China Sea (SCS), East China Sea and Ja-pan/East Sea, which is embedded into a coarse-grid (3) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Com-parison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water in-trudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS South-ern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.
基金the National Natural Science Foundation of China under Grant Nos.40675041,40333026,and 40425009.
文摘The relationships between the 200-hPa westerly jet stream anomalies over the East Asian coastal waterwestern Pacific (WPJS), and the oceanic surface heating and synoptic-scale transient eddy (STE) activity anomalies over the North Pacific in wintertime are examined by using ERA-40 and NCEP/NCAR reanalysis data. The analysis demonstrates that the surface heating and the STE anomalies have different patterns, corresponding to the three WPJS anomalous modes, respectively. In the first WPJS anomalous mode, the WPJS main part shows no robust anomaly. The anomalous westerly wind, occurring over the mid-latitude central-eastern Pacific past the date line is associated with the anomalous heating presenting both in the tropical central-eastern Pacific past the date line and the center of the North Pacific basin. Meanwhile, the STE anomaly appears around the region of the anomalous zonal wind. The fluctuation in jet strength shown in the second WPJS mode is strongly related to the heating anomaly in the Kuroshio Current region and the STE anomaly in the jet exit region. The third mode demonstrates a northward/southward shift of the WPJS, which has a statistical connection with a south-north dipolar pattern of the heating anomaly in the western North Pacific separated at 35°N. Meanwhile, the STE spatial displacement is in conjunction with jet shifts in the same direction. The heating anomaly has a close connection with the atmospheric circulation, and thus changes the mid-latitude baroclinicity, leading to the STE anomaly, which then reinforces the WPJS anomaly via internal atmospheric dynamics.
基金Project supported by the National Basic Research Program (973) of China (No. 2011CB706506)the National Science and Technology Major Project of China (Nos. 2011ZX04014-131 and 2012ZX04010 011)the National Science Foundation for Young Scholars of China (No. 51005204)
文摘In five-axis machining,tool orientation above a blade stream surface may lead to tool collision and a decrease in workpiece rigidity.Hence,collisionless tool orientation smoothing(TOS)becomes an important issue.On the basis of a constant scallop height tool path,the triangular facets in the faces,vertices format are constructed from cutter contact(CC)using the Voronoi incremental algorithm.The cutter location(CL)points candidate set is represented by an oblique elliptic cone whose vertex lies at CC using NURBS envelope.Whether the CL point is above its CC is judged by the dot product between the normal vector and the point on triangulation nearest to the CL point.The curvatures at CC are obtained by fitting a moving least square(MLS) quadratic patch to the local neighborhood of a vertex and calculating eigenvectors and eigenvalues of the Hessian matrix.Triangular surface elastic energy is employed as the weight in selection from the NURBS envelope.The collision is judged by NURBS surface intersection.TOS can then be expressed by selecting a CL point for each CC point and converted into a numerical control(NC)code automatically according to the postprocessor type of the machine center.The proposed method is verified by finishing of a cryogenic turboexpander impeller of air separation equipment.
基金the Biology and Geosciences Departments of the University of Aveiro,Portugal and to the Fundacao para a Ciência e a Tecnologia,Portugal(grant number SFRH/BD/36137/2007)
文摘Aljustrel mines were classified as having high environmental hazard due to their large tailings volume and high metal concentrations in waters and sediments.To assess acid mine drainage impacted systems whose environmental conditions change quickly,the use of biological indicators with short generation time such as diatoms is advantageous.This study combined geochemical and diatom data,whose results were highlighted in 3 groups:Group 1,with low p H(1.9–5.1)and high metal/metalloid(Al,As,Cd,Co,Cu,Fe,Mn,Ni,Pb,Zn;0.65–1032 mg/L)and SO4(405–39124 mg/L)concentrations.An acidophilic species,Pinnularia aljustrelica,was perfectly adapted to the adverse conditions;in contrast,teratological forms of Eunotia exigua were found,showing that metal toxicity affected this species.The low availability of metals/metalloids in sediments of this group indicates that metals/metalloids of the exchangeable fractions had been solubilized,which in fact enables metal/metalloid diatom uptake and consequently the occurrence of teratologies;Group 2,with sites of near neutral p H(5.0–6.8)and intermediate metal/metalloid(0.002–6 mg/L)and SO4(302–2179 mg/L)concentrations;this enabled the existence of typical species of uncontaminated streams(Brachysira neglectissima,Achnanthidium minutissimum);Group 3,with samples from unimpacted sites,showing low metal/metalloid(0–0.8 mg/L)and SO4(10–315 mg/L)concentrations,high pH(7.0–8.4)and Cl contents(10–2119 mg/L)and the presence of brackish to marine species(Entomoneis paludosa).For similar conditions of acidity,differences in diversity,abundance and teratologies of diatoms can be explained by the levels of metals/metalloids.