Based on the multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, using white noise estimators, an optimal fusion distributed Kalman smoother is given for discre...Based on the multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, using white noise estimators, an optimal fusion distributed Kalman smoother is given for discrete multi-channel ARMA (autoregressive moving average) signals. The smoothing error cross-covanance matrices between any two sensors are given for measurement noises. Furthermore, the fusion smoother gives higher precision than any local smoother does.展开更多
文摘Based on the multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, using white noise estimators, an optimal fusion distributed Kalman smoother is given for discrete multi-channel ARMA (autoregressive moving average) signals. The smoothing error cross-covanance matrices between any two sensors are given for measurement noises. Furthermore, the fusion smoother gives higher precision than any local smoother does.