This study aimed to set a computer-integrated multichannel spectral imaging system as a high-throughput phenotyping tool for the analysis of individual cowpea seeds harvested at different developmental stages. The cha...This study aimed to set a computer-integrated multichannel spectral imaging system as a high-throughput phenotyping tool for the analysis of individual cowpea seeds harvested at different developmental stages. The changes in germination capacity and variations in moisture, protein and different sugars during twelve stages of seed development from 10 to 32 days after anthesis were nondestructively monitored. Multispectral data at 20 discrete wavelengths in the ultraviolet, visible and near infrared regions were extracted from individual seeds and then modelled using partial least squares regression and linear discriminant analysis(LDA) models. The developed multivariate models were accurate enough for monitoring all possible changes occurred in moisture, protein and sugar contents with coefficients of determination in prediction R^(2) of 0.93, 0.80 and 0.78 and root mean square errors in prediction(RMSEP) of 6.045%, 2.236% and 0.890%, respectively. The accuracy of PLS models in predicting individual sugars such as verbascose and stachyose was reasonable with R~2 of 0.87 and 0.87 and RMSEP of 0.071%and 0.485%, respectively;but for the prediction of sucrose and raffinose the accuracy was relatively limited with R^(2) of 0.24 and 0.66 and RMSEP of 0.567% and 0.045%, respectively. The developed LDA model was robust in classifying the seeds based on their germination capacity with overall correct classification of96.33% and 95.67% in the training and validation datasets, respectively. With these levels of accuracy,the proposed multichannel spectral imaging system designed for single seeds could be an effective choice as a rapid screening and non-destructive technique for identifying the ideal harvesting time of cowpea seeds based on their chemical composition and germination capacity. Moreover, the development of chemical images of the major constituents along with classification images confirmed the usefulness of the proposed technique as a non-destructive tool for estimating the concentrations and spatial distributions of moisture, protein and sugars during different developmental stages of cowpea seeds.展开更多
Abstract This paper aims at the multichannel synthetic aperture radar (SAR) image speckle reduc- tion. This paper proposes a novel energy minimized regularization model for multichannel image denoising, which is an ...Abstract This paper aims at the multichannel synthetic aperture radar (SAR) image speckle reduc- tion. This paper proposes a novel energy minimized regularization model for multichannel image denoising, which is an extension of the non-local total variational model for gray-scale image. It contains two terms, namely the vectorial data fidelity term and the non-local vectorial total variation term. The latter is constructed by high-dimensional non-local gradient that contains the structure information of the multichannel image. The existence and the uniqueness of the solution of the model are proved. A fixed point iterative algorithm is designed to acquire the solution of this model. The convergence property of this algorithm is proved as well. This model is applied to the multipolarimetric and multi-temporal RAI)ARSAT-2 images despeckling. The result shows that this model performs better than the original vectorial total variational model on texture preserving.展开更多
基金supported by the STDF-IRD-AUF Joint Research Project No. 27755 provided by Egyptian Science and Technology Development Fund (STDF)the Distinguished Scientist Fellowship Program (DSFP) of King Saud University。
文摘This study aimed to set a computer-integrated multichannel spectral imaging system as a high-throughput phenotyping tool for the analysis of individual cowpea seeds harvested at different developmental stages. The changes in germination capacity and variations in moisture, protein and different sugars during twelve stages of seed development from 10 to 32 days after anthesis were nondestructively monitored. Multispectral data at 20 discrete wavelengths in the ultraviolet, visible and near infrared regions were extracted from individual seeds and then modelled using partial least squares regression and linear discriminant analysis(LDA) models. The developed multivariate models were accurate enough for monitoring all possible changes occurred in moisture, protein and sugar contents with coefficients of determination in prediction R^(2) of 0.93, 0.80 and 0.78 and root mean square errors in prediction(RMSEP) of 6.045%, 2.236% and 0.890%, respectively. The accuracy of PLS models in predicting individual sugars such as verbascose and stachyose was reasonable with R~2 of 0.87 and 0.87 and RMSEP of 0.071%and 0.485%, respectively;but for the prediction of sucrose and raffinose the accuracy was relatively limited with R^(2) of 0.24 and 0.66 and RMSEP of 0.567% and 0.045%, respectively. The developed LDA model was robust in classifying the seeds based on their germination capacity with overall correct classification of96.33% and 95.67% in the training and validation datasets, respectively. With these levels of accuracy,the proposed multichannel spectral imaging system designed for single seeds could be an effective choice as a rapid screening and non-destructive technique for identifying the ideal harvesting time of cowpea seeds based on their chemical composition and germination capacity. Moreover, the development of chemical images of the major constituents along with classification images confirmed the usefulness of the proposed technique as a non-destructive tool for estimating the concentrations and spatial distributions of moisture, protein and sugars during different developmental stages of cowpea seeds.
基金supported by the National Natural Science Foundation of China(Nos.61072142,61271437,61201337)the Science Research Project of National University of Defense Technology of China(Nos.JC12-02-05,JC13-02-03)
文摘Abstract This paper aims at the multichannel synthetic aperture radar (SAR) image speckle reduc- tion. This paper proposes a novel energy minimized regularization model for multichannel image denoising, which is an extension of the non-local total variational model for gray-scale image. It contains two terms, namely the vectorial data fidelity term and the non-local vectorial total variation term. The latter is constructed by high-dimensional non-local gradient that contains the structure information of the multichannel image. The existence and the uniqueness of the solution of the model are proved. A fixed point iterative algorithm is designed to acquire the solution of this model. The convergence property of this algorithm is proved as well. This model is applied to the multipolarimetric and multi-temporal RAI)ARSAT-2 images despeckling. The result shows that this model performs better than the original vectorial total variational model on texture preserving.