期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Antiepileptic drug-induced multidrug resistance P-glycoprotein overexpression in astrocytes cultured from rat brains 被引量:21
1
作者 吕洋 晏勇 王学峰 《Chinese Medical Journal》 SCIE CAS CSCD 2004年第11期1682-1686,共5页
Background Intractable epilepsy may be due to multidrug resistance induced by conventional antiepileptic drugs. The phenomenon is sometimes associated with an overexpression of multidrug resistance gene 1 (MDR 1). T... Background Intractable epilepsy may be due to multidrug resistance induced by conventional antiepileptic drugs. The phenomenon is sometimes associated with an overexpression of multidrug resistance gene 1 (MDR 1). The purpose of this study was to determine if the overexpression of MDR 1 could be induced in astrocytes from rat brains in vitro using antiepileptic drugs.Methods Astrocyte cell cultures from postnatal Wistar rats (within 24 hours of birth) were established. Different concentrations of the antiepileptic drugs phenytoin, phenobarbital, carbamazepine, and valproic acid were added to the cultures for 10, 20, or 30 days. The expression of P-glycoprotein (Pgp), the protein product of MDR 1, was investigated with immunocytochemistry. Results Less than 5% of normal, untreated astrocytes had detectable Pgp staining at any time point. Phenytoin, phenobarbital, carbamazepine, and valproic acid induced the overexpression of Pgp in astrocytes in a dose- and time-dependent manner. Significantly higher levels of Pgp staining were detected at therapeutic concentrations of certain antiepileptic drugs (20 μg/ml phenobarbital, 40 μg/ml phenobarbital, and 20 μg/ml phenytoin) on day 30. Upregulation of Pgp was detected when using higher concentrations of phenytoin, phenobarbital, and valproic acid on day 20 and when using higher concentrations of any of the four antiepileptic drugs on day 30. Conclusions Treatment with antiepileptic drugs may contribute to the overexpression in astrocytes of MDR 1 and its protein product, Pgp. The mechanism leading to MDR must be considered in patients undergoing long-term treatment with antiepileptic drugs. 展开更多
关键词 antiepileptic drugs · P-glycoprotein · multidru g resistance gene · astrocytes
原文传递
Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-si RNA 被引量:4
2
作者 Yun Shi Si-Ye Wang +6 位作者 Min Yao Wen-Li Sai Wei Wu Jun-Ling Yang Yin Cai Wen-Jie Zheng Deng-Fu Yao 《World Journal of Gastroenterology》 SCIE CAS 2015年第45期12814-12821,共8页
AIM: To investigate small interfering RNA(si RNA)-mediated inhibition of nuclear factor-kappa B(NF-κB) activation and multidrug-resistant(MDR) phenotype formation in human Hep G2 cells. METHODS: Total RNA was extract... AIM: To investigate small interfering RNA(si RNA)-mediated inhibition of nuclear factor-kappa B(NF-κB) activation and multidrug-resistant(MDR) phenotype formation in human Hep G2 cells. METHODS: Total RNA was extracted from human Hep G2 or LO2 cells. NF-κB/p65 m RNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-si RNA was transfected to Hep G2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein(P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay.RESULTS: Hep G2 cells express NF-κB/p65 and express relatively less phosphorylated p65(P-p65) and little P-gp. After treatment of Hep G2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After Hep G2 cells were transfected with NF-κB/p65 si RNA(100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulatedsignificantly and dose-dependently. The viability of Hep G2 cells was decreased to 23% in the combination NF-κB/p65 si RNA(100 nmol/L) and doxorubicin(0.5 μmol/L) group and 47% in the doxorubicin(0.5 μmol/L) group(t = 7.043, P < 0.001). CONCLUSION: Knockdown of NF-κB/p65 with si RNA is an effective strategy for inhibiting Hep G2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction. 展开更多
关键词 HEPATOCELLULAR CARCINOMA Nuclear factorκB multidru
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部