Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array.Saturated vapors of four pure chemicals,anisole,ca...Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array.Saturated vapors of four pure chemicals,anisole,carvone,citral and isoamyl acetate were applied.After aligning spike trains to the initial phase of the inhalation after odor onset,the responses of M/T cells showed transient temporal features including excitatory and inhibitory patterns.Both odor-evoked patterns indicated that mammals recognize odors within a short respiration cycle after odor stimulus.Due to the small amount of information received from a single cell,we pooled results from all responsive M/T cells to study the ensemble activity.The firing rates of the cell ensembles were computed over 100 ms bins and population vectors were constructed.The high dimension vectors were condensed into three dimensions for visualization using principal component analysis.The trajectories of both excitatory and inhibitory cell ensembles displayed strong dynamics during odor stimulation.The distances among cluster centers were enlarged compared to those of the resting state.Thus,we presumed that pictures of odor information sent to higher brain regions were depicted and odor discrimination was completed within the first breathing cycle.展开更多
The measurement of the electrophysiology of human pluripotent stem cell-derived cardiomyocytes is critical for their biomedical applications,from disease modeling to drug screening.Yet,a method that enables the high-t...The measurement of the electrophysiology of human pluripotent stem cell-derived cardiomyocytes is critical for their biomedical applications,from disease modeling to drug screening.Yet,a method that enables the high-throughput intracellular electrophysiology measurement of single cardiomyocytes in adherent culture is not available.To address this area,we have fabricated vertical nanopillar electrodes that can record intracellular action potentials from up to 60 single beating cardiomyocytes.Intracellular access is achieved by highly localized electroporation,which allows for low impedance electrical access to the intracellular voltage.Herein,we demonstrate that this method provides the accurate measurement of the shape and duration of intracellular action potentials,validated by patch clamp,and can facilitate cellular drug screening and disease modeling using human pluripotent stem cells.This study validates the use of nanopillar electrodes for myriad further applications of human pluripotent stem cell-derived cardiomyocytes such as cardiomyocyte maturation monitoring and electrophysiology-contractile force correlation.展开更多
基金Project (Nos. 30970765 and 81027003) supported by the National Natural Science Foundation of China
文摘Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array.Saturated vapors of four pure chemicals,anisole,carvone,citral and isoamyl acetate were applied.After aligning spike trains to the initial phase of the inhalation after odor onset,the responses of M/T cells showed transient temporal features including excitatory and inhibitory patterns.Both odor-evoked patterns indicated that mammals recognize odors within a short respiration cycle after odor stimulus.Due to the small amount of information received from a single cell,we pooled results from all responsive M/T cells to study the ensemble activity.The firing rates of the cell ensembles were computed over 100 ms bins and population vectors were constructed.The high dimension vectors were condensed into three dimensions for visualization using principal component analysis.The trajectories of both excitatory and inhibitory cell ensembles displayed strong dynamics during odor stimulation.The distances among cluster centers were enlarged compared to those of the resting state.Thus,we presumed that pictures of odor information sent to higher brain regions were depicted and odor discrimination was completed within the first breathing cycle.
基金This work was supported by NSF(CAREER award 1055112),NIH(Innovator award NS082125)a Packard Fellowship(BC)+2 种基金NIH HL133272,NIH HL126527,and NIH HL128170(JCW)NIH K99/R00 HL121177(PWB)16BGIA27790017 AHA Beginning Grant-in-Aid(EM)。
文摘The measurement of the electrophysiology of human pluripotent stem cell-derived cardiomyocytes is critical for their biomedical applications,from disease modeling to drug screening.Yet,a method that enables the high-throughput intracellular electrophysiology measurement of single cardiomyocytes in adherent culture is not available.To address this area,we have fabricated vertical nanopillar electrodes that can record intracellular action potentials from up to 60 single beating cardiomyocytes.Intracellular access is achieved by highly localized electroporation,which allows for low impedance electrical access to the intracellular voltage.Herein,we demonstrate that this method provides the accurate measurement of the shape and duration of intracellular action potentials,validated by patch clamp,and can facilitate cellular drug screening and disease modeling using human pluripotent stem cells.This study validates the use of nanopillar electrodes for myriad further applications of human pluripotent stem cell-derived cardiomyocytes such as cardiomyocyte maturation monitoring and electrophysiology-contractile force correlation.