The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series...The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series of Pd supported on mixed metal oxide(MMO) catalysts with controllable acidic/basic/metallic sites on the surface. We study the relationship between the nature, synergy,and proximity of active sites and the catalytic performance of the multifunctional catalyst in the tandem reaction, in detail. In the existence of Lewis acid and base sites, the catalysts with medium-strength acidic/basic sites show preferred activity and/or MIBK selectivity. For multifunctional catalysts, the catalytic properties are more than just a collection of active sites, and the Pd/Mg_3Al-MMO catalyst possessing 0.1% Pd loading and ~0.4 acid/base molar ratio exhibits the optimal 42.1% acetone conversion and 37.2% MIBK yield, which is among the best reported so far for this tandem reaction under similar conditions. Moreover, the proximity test indicates that the intimate distance between acidic/basic/metallic sites can greatly shorten the diffusion time of the intermediate species from each active site, leading to an enhancement in the catalytic performance.展开更多
Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target.Herein,a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co...Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target.Herein,a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants.Fe atoms are highly dispersed and fixed to the polymer microsphere,followed by a high-temperature decomposition,for the generation of carbon-based catalyst with a honeycomb-like structure.The as-prepared catalyst contains a large number of Fe/Co nanoparticles(Fe/Co NPs),providing the excellent catalytic activity and durability in oxygen reduction reaction,oxygen evolution reaction and hydrogen evolution reaction.The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity,and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle.Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.展开更多
The small organic molecule electro-oxidation(OMEO) and the hydrogen evolution(HER) are two important half-reactions in direct liquid fuel cells(DLFCs) and water electrolyzers,respectively,whose performance is largely ...The small organic molecule electro-oxidation(OMEO) and the hydrogen evolution(HER) are two important half-reactions in direct liquid fuel cells(DLFCs) and water electrolyzers,respectively,whose performance is largely hindered by the low activity and poor stability of electrocatalysts.Herein,we demonstrate that a simple phosphorization treatment of commercially available palladium-nickel(PdNi) catalysts results in multifunctional ternary palladium nickel phosphide(PdNiP) catalysts,which exhibit substantially enhanced electrocatalytic activity and stability for HER and OMEO of a number of molecules including formic acid,methanol,ethanol,and ethylene glycol,in acidic and/or alkaline media.The improved performance results from the modification of electronic structure of palladium and nickel by the introduced phosphorus and the enhanced corrosion resistance of PdNiP.The simple phosphorization approach reported here allows for mass production of highly-active OMEO and HER electrocatalysts,holding substantial promise for their large-scale application in direct liquid fuel cells and water electrolyzers.展开更多
The facile designs and fabrication of noble metal-free electrocatalysts are highly required to achieve multifunctional catalytic activity with excellent stability in Zn-air batteries,fuel cells and water splitting sys...The facile designs and fabrication of noble metal-free electrocatalysts are highly required to achieve multifunctional catalytic activity with excellent stability in Zn-air batteries,fuel cells and water splitting systems.Herein,a heterostructure engineering is applied to construct the high performance Co,Ncontaining carbon-based multifunctional electrocatalysts with the feature of isotype(i.e.n-n type Co_(2)N_(0.67)-BHPC)and anisotype(i.e.p-n type Co_(2)O_(3)-BHPC)heterojunctions for ORR,OER and HER.The nn type Co_(2)N_(0.67)-BHPC,in which biomass(e.g.mushroom)-derived hierarchical porous carbon(BHPC)incorporated with nonstoichiometric active species Co_(2)N_(0.67),is fabricated by using an in situ protective strategy of macrocyclic central Co-N_(4) from CoTPP(5,10,15,20-tetrakis(phenyl)porphyrinato cobalt)precursor through the intermolecularπ-πinteractions between CoTPP and its metal-free analogue H_(2) TPP.Meanwhile,an unprotected strategy of macrocyclic central Co-N_(4) from CoTPP can afford the anisotype Co_(2)O_(3)-BHPC p-n heterojunction.The as-prepared n-n type Co_(2)N_(0.67)-BHPC heterojunction exhibited a higher density of Co-based active sites with outstanding stability and more efficient charge transfer at the isotype heterojunction interface in comparison with p-n type Co_(2)O_(3)-BHPC heterojunction.Consequently,for ORR,Co_(2)N_(0.67)-BHPC exhibits the more positive onset and half-wave potentials of 0.93 and 0.86 V vs.RHE,respectively,superior to those of the commercial 20 wt%Pt/C and most of Cobased catalysts reported so far.To drive a current density of 10 mA cm^(-2),Co_(2)N_(0.67)-BHPC also shows the lower overpotentials of 0.34 and 0.21 V vs.RHE for OER and HER,respectively.Furthermore,the Zn-air battery equipped with Co_(2)N_(0.67)-BHPC displays higher maximum power density(109 mW cm^(-2))and charge-discharge cycle stability.Interestingly,the anisotype heterojunction Co_(2)O_(3)-BHPC as trifunctional electrocatalyst reveals evidently photoelectrochemical enhancement compared with the photostable Co_(2)N_(0.67)-BHPC.That is to say,isotype heterojunction material(n-n type Co^(2)N_(0.67)-BHPC)is equipped with better electrocatalytic performance than anisotype one(p-n type Co_(2)O_(3)-BHPC),but the opposite is true in photoelectrochemical catalysis.Meanwhile,the possible mechanism is proposed based on the energy band structures of the Co_(2)N_(0.67)-BHPC and Co_(2)O_(3)-BHPC and the cocatalyst effects.The present work provides much more possibilities to tune the electrocatalytic and photoelectrochemical properties of catalysts through a facile combination of heterostructure engineering protocol and macrocyclic central metal protective strategy.展开更多
Ternary multifunctional A<sub>1</sub>Zn<sub>y</sub>Zr<sub>z</sub>O<sub>n</sub> catalysts are prepared by introducing A-site transition metals with the redox capability i...Ternary multifunctional A<sub>1</sub>Zn<sub>y</sub>Zr<sub>z</sub>O<sub>n</sub> catalysts are prepared by introducing A-site transition metals with the redox capability into binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub>. Structure and morphology were investigated by means of XRD, BET and FESEM, respectively. Activity data showed that Cr addition exhibited obvious beneficial effect to promote isobutene production from direct conversion of bio-ethanol compared to other A-site metal dopants. A significant higher yield of isobutene over Cr-promoted Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> catalyst was also observed with respect to its binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> counterpart. The choice of A-site metal is of prime importance in the isobutene production, catalyzing mainly the ethanol dehydrogenation, meanwhile the appropriate addition of zinc on the catalyst surface is also essential for good isobutene yield.展开更多
Severe polysulfide shuttling and sluggish sulfur redox kinetics significantly decrease sulfur utilization and cycling stability in lithium-sulfur batteries(LSBs).Herein,we develop a hollow CoO/CoP-Box core-shell heter...Severe polysulfide shuttling and sluggish sulfur redox kinetics significantly decrease sulfur utilization and cycling stability in lithium-sulfur batteries(LSBs).Herein,we develop a hollow CoO/CoP-Box core-shell heterostructure as a model and multifunctional catalyst modified on separators to induce interfacial charge modulation and expose more active sites for promoting the adsorption and catalytic conversion ability of sulfur species.Theoretical and experimental findings verify that the in-situ formed core-shell hetero-interface induces the formation of P-Co-O binding and charge redistribution to activate surface O active sites for binding lithium polysulfides(LiPSs)via strong Li-O bonding,thus strongly adsorbing with Li PSs.Meanwhile,the strong Li-O bonding weakens the competing Li-S bonding in LiPSs or Li2S adsorbed on CoO/CoP-Box surface,plus the hollow heterostructure provides abundant active sites and fast electron/Li+transfer,so reducing Li2S nucleation/dissolution activation energy.As expected,LSBs with CoO/CoP-Box modified separator and traditional sulfur/carbon black cathode display a large initial capacity of 1240 mA h g^(-1)and a long cycling stability with 300 cycles(~60.1%capacity retention)at 0.5C.Impressively,the thick sulfur cathode(sulfur loading:5.2 mg cm^(-2))displays a high initial areal capacity of 6.9 mA h cm^(-2).This work verifies a deep mechanism understanding and an effective strategy to induce interfacial charge modulation and enhance active sites for designing efficient dual-directional Li-S catalysts via engineering hollow core-shell hetero-structure.展开更多
With the merits of high atom utilization,low cost,unique and tunable microstructures,as well as the particular catalytic behaviors,single-atom catalysts(SACs)have gained worldwide interest and achieved great advanceme...With the merits of high atom utilization,low cost,unique and tunable microstructures,as well as the particular catalytic behaviors,single-atom catalysts(SACs)have gained worldwide interest and achieved great advancements in heterogeneous catalysis recently.However,catalyzing an intricate multistep reaction is usually challenging for one single-atom center,in which case multiple catalytic sites are needed.In this review,the experimental and computational advances in the construction strategies of multi-active-site SACs will be summarized and classified as single-atom/single-atom,single-atom/nanoparticle and single-atom/support multifunctional catalysts.The microstructures of different active centers and their catalytic behaviors during catalysis will be emphatically highlighted.Moreover,the confronting challenges and opportunities of this field will be discussed.This review will place emphasis on the design of multifunctional SACs for multistep reactions,which will shed light on their further development in heterogeneous catalysis and beyond.展开更多
The scarcity of highly effective and economical catalysts is a major impediment to the widespread adop-tion of electrochemical water splitting for the generation of hydrogen.MoS_(2),a low-cost candidate,suffers from i...The scarcity of highly effective and economical catalysts is a major impediment to the widespread adop-tion of electrochemical water splitting for the generation of hydrogen.MoS_(2),a low-cost candidate,suffers from inefficient catalytic activity.Nonetheless,a captivating strategy has emerged,which involves the en-gineering of heteroatom doping to enhance electrochemical proficiency.This investigation demonstrates a successful implementation of the strategy by combining ultrathin MoS_(2) nanosheets with Co and Ni dual single multi-atoms(DSMAs)grown directly on 2D N-doped carbon nanosheets(CoNi-MoS_(2)/NCNs)for the purpose of improving hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).With the aid of a dual-atom doped bifunctional electrocatalyst,effective water splitting has been achieved across a broad pH range in electrolytes.The double doping of Co and Ni strengthens their interactions,thereby altering the electromagnetic composition of the host MoS_(2) and ultimately leading to improved electrocat-alytic activity.Additionally,the synergistic effect between NCNs and MoS_(2) nanosheets provided efficient electron transport channels for ions and an ample surface area with open voids for ion diffusion.Con-sequently,the CoNi-MoS_(2)/NCNs catalysts demonstrated exceptional stability and activity,producing low degree overpotentials of 180.5,124.9,and 196.4 mV for HER and 200,203,and 207 mV for OER in neu-tral,alkaline,and acidic mediums,respectively,while also exhibiting outstanding overall water-splitting performance,durability,and stability when used as an electrolyzer at universal pH.展开更多
Selective oxidation of alkanes to produce highvalue chemicals is an essential strategy and means to realize efficient utilization of resources.In this work,a strategy of lanthanum manganese mixed metal oxides(LMMO)reg...Selective oxidation of alkanes to produce highvalue chemicals is an essential strategy and means to realize efficient utilization of resources.In this work,a strategy of lanthanum manganese mixed metal oxides(LMMO)regulated via a facile ionic liquid(IL)-assisted hydrothermal method was proposed to construct the multifunctional catalysts,which exhibited excellent catalytic performance in the selective aerobic oxidation of cyclohexane.An 8.9%cyclohexane conversion with 90%KA oi(cyclohexanol and cyclohexanone)selectivity was achieved over the optimal LMMO catalyst under mild conditions.The effects of anion type,carbon chain length and concentration of ILs on the structure and properties of catalysts were investigated through various characterizations,indicating the structure-directing and template effect of ILs on the multifunctional catalysts.The formation of self-assembled spherical nanoparticles followed the"dissolution-nucleation-proliferation"mechanism with the introduction of 1-butyl-3-methylimidazolium hydrogen sulfate,ascribing the synergistic effect between the microenvironment of ILs and the hydrothermal environment.Importantly,the high reactive oxygen concentration redox capacity,and suitable basic sites of LMMO catalysts mediated by ILs enhance the activation of C-H bonds and molecular oxygen,simultaneously influencing the adsorption and desorption of the substrate.A comprehensive understanding of the high KA oil selectivity and radical reaction mechanism was elucidated based on in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and radical trapping experiments.The recycling and regeneration experiments further illuminated that the removal of adsorbed cyclohexanone acting on the LMMO catalyst was the key to achieve high KA oil selectivity.展开更多
In recent years,the isolated single-atom site(ISAS)catalysts have attracted much attention as they are cost-effective,can achieve 100%atom-utilization efficiency,and often display superior catalytic performance.Here,w...In recent years,the isolated single-atom site(ISAS)catalysts have attracted much attention as they are cost-effective,can achieve 100%atom-utilization efficiency,and often display superior catalytic performance.Here,we developed a biomass-assisted pyrolysis-etching-activation(PEA)strategy to construct ISAS metal decorated on N and B co-doped porous carbon(ISAS M/NBPC,M=Co,Fe,or Ni)catalysts.This PEA strategy can be applied in the universal and large-scale preparation of ISAS catalysts.Interestingly,the ISAS M/NBPC(M=Co,Fe,or Ni)catalysts show multi-functional features and excellent catalytic activities.They can be used to conduct different types of catalytic reactions,such as O-silylation(OSI),oxidative dehydrogenation(ODH),and transfer hydrogenation(THG).In addition,we used the transfer hydrogenation of nitrobenzene as a typical reaction and revealed the difference between ISAS Co/NBPC and ISAS Co/NPC(N-doped porous carbon)catalysts by density functional theory(DFT)calculations,and which showed that the decreased barrier of the ratedetermining step and the low-lying potential energy diagram indicate that the catalytic activity is higher when ISAS Co/NBPC is used than that when ISAS Co/NPC is used.These results demonstrate that the catalytic performance can be effectively improved by adjusting the coordination environment around the ISAS.展开更多
Multifunctional catalysts that exhibit high catalytic performance for the hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR)in a single material hold great promise for b...Multifunctional catalysts that exhibit high catalytic performance for the hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR)in a single material hold great promise for broad-spectrum applications,including overall water splitting,fuel cells,and metal-air batteries.In this first-principles study,Cu_(3) N is computationally demonstrated as a multifunctional electrocatalyst for the HER,OER,and ORR owing to the unique coordination of N and Cu atoms on the(001)surface.Cu_(3) N exhibits better HER catalytic activity than noble Pt-based catalysts.Furthermore,its OER and ORR catalytic activity is comparable to that of commercialized unifunctional catalysts,and its 4e-pathway selectivity is high during the ORR.The catalytic performance of the ORR is significantly improved by the introduction of vacancy defects.The integration of highly efficient HER,OER,and ORR catalytic performance in earth-abundant Cu_(3) N not only opens an avenue for developing cost-efficient omnipotent catalysts but also facilitates advances in clean and renewable energy.展开更多
文摘The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series of Pd supported on mixed metal oxide(MMO) catalysts with controllable acidic/basic/metallic sites on the surface. We study the relationship between the nature, synergy,and proximity of active sites and the catalytic performance of the multifunctional catalyst in the tandem reaction, in detail. In the existence of Lewis acid and base sites, the catalysts with medium-strength acidic/basic sites show preferred activity and/or MIBK selectivity. For multifunctional catalysts, the catalytic properties are more than just a collection of active sites, and the Pd/Mg_3Al-MMO catalyst possessing 0.1% Pd loading and ~0.4 acid/base molar ratio exhibits the optimal 42.1% acetone conversion and 37.2% MIBK yield, which is among the best reported so far for this tandem reaction under similar conditions. Moreover, the proximity test indicates that the intimate distance between acidic/basic/metallic sites can greatly shorten the diffusion time of the intermediate species from each active site, leading to an enhancement in the catalytic performance.
基金supported by the National Natural Science Foundation of China(No.51973009)supported by open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF21).
文摘Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target.Herein,a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants.Fe atoms are highly dispersed and fixed to the polymer microsphere,followed by a high-temperature decomposition,for the generation of carbon-based catalyst with a honeycomb-like structure.The as-prepared catalyst contains a large number of Fe/Co nanoparticles(Fe/Co NPs),providing the excellent catalytic activity and durability in oxygen reduction reaction,oxygen evolution reaction and hydrogen evolution reaction.The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity,and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle.Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.
基金financial support of China Scholarship Council,China(Grant No.201806150015)the financial support of the Portuguese Foundation of Science and Technology through TACIT project(Grant No.02/SAICT/2017/028837)the National Innovation Agency of Portugal through Baterias 2030 project(Grant No.POCI-01-0247FEDER-046109)to this work。
文摘The small organic molecule electro-oxidation(OMEO) and the hydrogen evolution(HER) are two important half-reactions in direct liquid fuel cells(DLFCs) and water electrolyzers,respectively,whose performance is largely hindered by the low activity and poor stability of electrocatalysts.Herein,we demonstrate that a simple phosphorization treatment of commercially available palladium-nickel(PdNi) catalysts results in multifunctional ternary palladium nickel phosphide(PdNiP) catalysts,which exhibit substantially enhanced electrocatalytic activity and stability for HER and OMEO of a number of molecules including formic acid,methanol,ethanol,and ethylene glycol,in acidic and/or alkaline media.The improved performance results from the modification of electronic structure of palladium and nickel by the introduced phosphorus and the enhanced corrosion resistance of PdNiP.The simple phosphorization approach reported here allows for mass production of highly-active OMEO and HER electrocatalysts,holding substantial promise for their large-scale application in direct liquid fuel cells and water electrolyzers.
基金financially supported by the National Natural Science Foundation of China(21771192)Major Program of Shandong Province Natural Science Foundation(ZR2017ZB0315)+3 种基金Program for Taishan Scholar of Shandong Province(ts201712019)the Fundamental Research Funds for the Central Universities(19CX05001A,18CX02053A)Qingdao Applied Basic Research Project(19-6-2-20-cg)Yankuang Group 2019 Science and Technology Program。
文摘The facile designs and fabrication of noble metal-free electrocatalysts are highly required to achieve multifunctional catalytic activity with excellent stability in Zn-air batteries,fuel cells and water splitting systems.Herein,a heterostructure engineering is applied to construct the high performance Co,Ncontaining carbon-based multifunctional electrocatalysts with the feature of isotype(i.e.n-n type Co_(2)N_(0.67)-BHPC)and anisotype(i.e.p-n type Co_(2)O_(3)-BHPC)heterojunctions for ORR,OER and HER.The nn type Co_(2)N_(0.67)-BHPC,in which biomass(e.g.mushroom)-derived hierarchical porous carbon(BHPC)incorporated with nonstoichiometric active species Co_(2)N_(0.67),is fabricated by using an in situ protective strategy of macrocyclic central Co-N_(4) from CoTPP(5,10,15,20-tetrakis(phenyl)porphyrinato cobalt)precursor through the intermolecularπ-πinteractions between CoTPP and its metal-free analogue H_(2) TPP.Meanwhile,an unprotected strategy of macrocyclic central Co-N_(4) from CoTPP can afford the anisotype Co_(2)O_(3)-BHPC p-n heterojunction.The as-prepared n-n type Co_(2)N_(0.67)-BHPC heterojunction exhibited a higher density of Co-based active sites with outstanding stability and more efficient charge transfer at the isotype heterojunction interface in comparison with p-n type Co_(2)O_(3)-BHPC heterojunction.Consequently,for ORR,Co_(2)N_(0.67)-BHPC exhibits the more positive onset and half-wave potentials of 0.93 and 0.86 V vs.RHE,respectively,superior to those of the commercial 20 wt%Pt/C and most of Cobased catalysts reported so far.To drive a current density of 10 mA cm^(-2),Co_(2)N_(0.67)-BHPC also shows the lower overpotentials of 0.34 and 0.21 V vs.RHE for OER and HER,respectively.Furthermore,the Zn-air battery equipped with Co_(2)N_(0.67)-BHPC displays higher maximum power density(109 mW cm^(-2))and charge-discharge cycle stability.Interestingly,the anisotype heterojunction Co_(2)O_(3)-BHPC as trifunctional electrocatalyst reveals evidently photoelectrochemical enhancement compared with the photostable Co_(2)N_(0.67)-BHPC.That is to say,isotype heterojunction material(n-n type Co^(2)N_(0.67)-BHPC)is equipped with better electrocatalytic performance than anisotype one(p-n type Co_(2)O_(3)-BHPC),but the opposite is true in photoelectrochemical catalysis.Meanwhile,the possible mechanism is proposed based on the energy band structures of the Co_(2)N_(0.67)-BHPC and Co_(2)O_(3)-BHPC and the cocatalyst effects.The present work provides much more possibilities to tune the electrocatalytic and photoelectrochemical properties of catalysts through a facile combination of heterostructure engineering protocol and macrocyclic central metal protective strategy.
文摘Ternary multifunctional A<sub>1</sub>Zn<sub>y</sub>Zr<sub>z</sub>O<sub>n</sub> catalysts are prepared by introducing A-site transition metals with the redox capability into binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub>. Structure and morphology were investigated by means of XRD, BET and FESEM, respectively. Activity data showed that Cr addition exhibited obvious beneficial effect to promote isobutene production from direct conversion of bio-ethanol compared to other A-site metal dopants. A significant higher yield of isobutene over Cr-promoted Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> catalyst was also observed with respect to its binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> counterpart. The choice of A-site metal is of prime importance in the isobutene production, catalyzing mainly the ethanol dehydrogenation, meanwhile the appropriate addition of zinc on the catalyst surface is also essential for good isobutene yield.
基金supported by the National Natural Science Foundation of China(51972066)the Natural Science Foundation of Guangdong Province of China(2021A1515011718)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2017。
文摘Severe polysulfide shuttling and sluggish sulfur redox kinetics significantly decrease sulfur utilization and cycling stability in lithium-sulfur batteries(LSBs).Herein,we develop a hollow CoO/CoP-Box core-shell heterostructure as a model and multifunctional catalyst modified on separators to induce interfacial charge modulation and expose more active sites for promoting the adsorption and catalytic conversion ability of sulfur species.Theoretical and experimental findings verify that the in-situ formed core-shell hetero-interface induces the formation of P-Co-O binding and charge redistribution to activate surface O active sites for binding lithium polysulfides(LiPSs)via strong Li-O bonding,thus strongly adsorbing with Li PSs.Meanwhile,the strong Li-O bonding weakens the competing Li-S bonding in LiPSs or Li2S adsorbed on CoO/CoP-Box surface,plus the hollow heterostructure provides abundant active sites and fast electron/Li+transfer,so reducing Li2S nucleation/dissolution activation energy.As expected,LSBs with CoO/CoP-Box modified separator and traditional sulfur/carbon black cathode display a large initial capacity of 1240 mA h g^(-1)and a long cycling stability with 300 cycles(~60.1%capacity retention)at 0.5C.Impressively,the thick sulfur cathode(sulfur loading:5.2 mg cm^(-2))displays a high initial areal capacity of 6.9 mA h cm^(-2).This work verifies a deep mechanism understanding and an effective strategy to induce interfacial charge modulation and enhance active sites for designing efficient dual-directional Li-S catalysts via engineering hollow core-shell hetero-structure.
基金supported by the National Natural Science Foundation of China(22109118,21890383,21871159,22171157,22102119)the National Key R&D Program of China(2018YFA0702003)the Science and Technology Key Project of Guangdong Province of China(2020B010188002)。
文摘With the merits of high atom utilization,low cost,unique and tunable microstructures,as well as the particular catalytic behaviors,single-atom catalysts(SACs)have gained worldwide interest and achieved great advancements in heterogeneous catalysis recently.However,catalyzing an intricate multistep reaction is usually challenging for one single-atom center,in which case multiple catalytic sites are needed.In this review,the experimental and computational advances in the construction strategies of multi-active-site SACs will be summarized and classified as single-atom/single-atom,single-atom/nanoparticle and single-atom/support multifunctional catalysts.The microstructures of different active centers and their catalytic behaviors during catalysis will be emphatically highlighted.Moreover,the confronting challenges and opportunities of this field will be discussed.This review will place emphasis on the design of multifunctional SACs for multistep reactions,which will shed light on their further development in heterogeneous catalysis and beyond.
基金National Natural Science Foundation of China(Nos.52170157 and 52111530188)Natural Science Foundation of Shenzhen(No.JCYJ20220531095408020)+3 种基金Major Program of Jiangxi Provincial Department of Science and Technology(No.2022KSG01004)University-Industry Collaborative Education Program(No.220902016150653)Natural Science Foundation of Shenzhen(No.GXWD20201230155427003-20200802110025006)Start-up Grant Harbin Institute of Technology(Shenzhen)(Nos.IA45001007 and HA11409066).
文摘The scarcity of highly effective and economical catalysts is a major impediment to the widespread adop-tion of electrochemical water splitting for the generation of hydrogen.MoS_(2),a low-cost candidate,suffers from inefficient catalytic activity.Nonetheless,a captivating strategy has emerged,which involves the en-gineering of heteroatom doping to enhance electrochemical proficiency.This investigation demonstrates a successful implementation of the strategy by combining ultrathin MoS_(2) nanosheets with Co and Ni dual single multi-atoms(DSMAs)grown directly on 2D N-doped carbon nanosheets(CoNi-MoS_(2)/NCNs)for the purpose of improving hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).With the aid of a dual-atom doped bifunctional electrocatalyst,effective water splitting has been achieved across a broad pH range in electrolytes.The double doping of Co and Ni strengthens their interactions,thereby altering the electromagnetic composition of the host MoS_(2) and ultimately leading to improved electrocat-alytic activity.Additionally,the synergistic effect between NCNs and MoS_(2) nanosheets provided efficient electron transport channels for ions and an ample surface area with open voids for ion diffusion.Con-sequently,the CoNi-MoS_(2)/NCNs catalysts demonstrated exceptional stability and activity,producing low degree overpotentials of 180.5,124.9,and 196.4 mV for HER and 200,203,and 207 mV for OER in neu-tral,alkaline,and acidic mediums,respectively,while also exhibiting outstanding overall water-splitting performance,durability,and stability when used as an electrolyzer at universal pH.
基金financially supported by the National Science Fund for Excellent Young Scholars(No.22222813)the National Natural Science Foundation of China(No.22078338)+1 种基金the Key Scientific and Technological Projects in Huizhou(No.2021JBZ5.1)the Joint Fund of Yulin University and the Dalian National Laboratory for Clean Energy(No.YLU-DNL Fund2021016)。
文摘Selective oxidation of alkanes to produce highvalue chemicals is an essential strategy and means to realize efficient utilization of resources.In this work,a strategy of lanthanum manganese mixed metal oxides(LMMO)regulated via a facile ionic liquid(IL)-assisted hydrothermal method was proposed to construct the multifunctional catalysts,which exhibited excellent catalytic performance in the selective aerobic oxidation of cyclohexane.An 8.9%cyclohexane conversion with 90%KA oi(cyclohexanol and cyclohexanone)selectivity was achieved over the optimal LMMO catalyst under mild conditions.The effects of anion type,carbon chain length and concentration of ILs on the structure and properties of catalysts were investigated through various characterizations,indicating the structure-directing and template effect of ILs on the multifunctional catalysts.The formation of self-assembled spherical nanoparticles followed the"dissolution-nucleation-proliferation"mechanism with the introduction of 1-butyl-3-methylimidazolium hydrogen sulfate,ascribing the synergistic effect between the microenvironment of ILs and the hydrothermal environment.Importantly,the high reactive oxygen concentration redox capacity,and suitable basic sites of LMMO catalysts mediated by ILs enhance the activation of C-H bonds and molecular oxygen,simultaneously influencing the adsorption and desorption of the substrate.A comprehensive understanding of the high KA oil selectivity and radical reaction mechanism was elucidated based on in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and radical trapping experiments.The recycling and regeneration experiments further illuminated that the removal of adsorbed cyclohexanone acting on the LMMO catalyst was the key to achieve high KA oil selectivity.
基金This work was supported by the National Natural Science Foundation of China(Nos.21771003,51902003,21901007,22002085,and 21501004)the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-020)+3 种基金the Anhui Province Natural Science Foundation(Nos.2008085QB53 and 2008085QB83)the Natural Science Research Project of Anhui Province Education Department(No.KJ2019A0581)the Open Project of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling of Ministry of Education(No.JKF21-03)the Open Foundation of Anhui Laboratory of Clean Catalytic Engineering(No.LCCE-01).
文摘In recent years,the isolated single-atom site(ISAS)catalysts have attracted much attention as they are cost-effective,can achieve 100%atom-utilization efficiency,and often display superior catalytic performance.Here,we developed a biomass-assisted pyrolysis-etching-activation(PEA)strategy to construct ISAS metal decorated on N and B co-doped porous carbon(ISAS M/NBPC,M=Co,Fe,or Ni)catalysts.This PEA strategy can be applied in the universal and large-scale preparation of ISAS catalysts.Interestingly,the ISAS M/NBPC(M=Co,Fe,or Ni)catalysts show multi-functional features and excellent catalytic activities.They can be used to conduct different types of catalytic reactions,such as O-silylation(OSI),oxidative dehydrogenation(ODH),and transfer hydrogenation(THG).In addition,we used the transfer hydrogenation of nitrobenzene as a typical reaction and revealed the difference between ISAS Co/NBPC and ISAS Co/NPC(N-doped porous carbon)catalysts by density functional theory(DFT)calculations,and which showed that the decreased barrier of the ratedetermining step and the low-lying potential energy diagram indicate that the catalytic activity is higher when ISAS Co/NBPC is used than that when ISAS Co/NPC is used.These results demonstrate that the catalytic performance can be effectively improved by adjusting the coordination environment around the ISAS.
基金supported by the Natural Science Foundation of Shan-dong Province(ZR2021QA089)Doctor Foundation of Yantai Uni-versity(No.2220005).
文摘Multifunctional catalysts that exhibit high catalytic performance for the hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR)in a single material hold great promise for broad-spectrum applications,including overall water splitting,fuel cells,and metal-air batteries.In this first-principles study,Cu_(3) N is computationally demonstrated as a multifunctional electrocatalyst for the HER,OER,and ORR owing to the unique coordination of N and Cu atoms on the(001)surface.Cu_(3) N exhibits better HER catalytic activity than noble Pt-based catalysts.Furthermore,its OER and ORR catalytic activity is comparable to that of commercialized unifunctional catalysts,and its 4e-pathway selectivity is high during the ORR.The catalytic performance of the ORR is significantly improved by the introduction of vacancy defects.The integration of highly efficient HER,OER,and ORR catalytic performance in earth-abundant Cu_(3) N not only opens an avenue for developing cost-efficient omnipotent catalysts but also facilitates advances in clean and renewable energy.