For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
Presently, the notion of multigranulation has been brought to our attention. In this paper, the multigranulation technique is introduced into incomplete information systems. Both tolerance relations and maximal consis...Presently, the notion of multigranulation has been brought to our attention. In this paper, the multigranulation technique is introduced into incomplete information systems. Both tolerance relations and maximal consistent blocks are used to construct multigranulation rough sets. Not only are the basic properties about these models studied, but also the relationships between different multigranulation rough sets are explored. It is shown that by using maximal consistent blocks, the greater lower approximation and the same upper approximation as from tolerance relations can be obtained. Such a result is consistent with that of a single-granulation framework.展开更多
With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent gran...With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent granules among multiple granular spaces on the universe.Then,we investigate several important properties of the pessimistic rough decision model.With introduction of the rough set model,we have developed two types of multigranulation rough sets(MGRS):optimistic rough decision and pessimistic rough decision. These multigranulation rough set models provide a kind of effective approach for problem solving in the context of multi granulations.展开更多
为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多...为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多粒度证据融合决策模型.首先,提出多粒度区间二型模糊概率粗糙集模型;然后,通过离差最大化法和熵权法计算决策者权重和属性权重,依据多粒度概率粗糙集和MULTIMOORA法建立区间二型模糊多属性群决策模型,通过源自D-S证据理论的证据融合方法融合得出决策结果.通过钢铁行业耗能的实例,证明提出方法的可行性与有效性,总体上,提出的决策模型具备一定的容错力,有助于获得强解释力的稳健型决策结果.展开更多
知识约简是粗糙集研究的内容之一,粒度计算问题结合粗糙集的理论和应用可以解决一些问题.在一个由信息系统构成的多粒度数据集上,利用提出的Seeking Common Ground While Eliminating Differences(SCED)模型和给出的算法,较好地解决了...知识约简是粗糙集研究的内容之一,粒度计算问题结合粗糙集的理论和应用可以解决一些问题.在一个由信息系统构成的多粒度数据集上,利用提出的Seeking Common Ground While Eliminating Differences(SCED)模型和给出的算法,较好地解决了一些多粒度下的属性约简,所给出的实例从时间复杂度上也充分说明了模型和算法的有效性.展开更多
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61170165, 61100116, 61272419, 61373062), Natural Science Foundation of Jiangsu Province of China (BK2011492, BK2012700, BK20130471), Qing Lan Project of JiangsuProvince of China, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information (Nanjing University of Science and Tech- nology), Ministry of Education (30920130122005), Key Laboratory of Arti- ficial Intelligence of Sichuan Province (2013RYJ03), Natural Science Foun- dation of Jiangsu Higher Education Institutions of China (13KJB520003, 13KJD520008).
文摘Presently, the notion of multigranulation has been brought to our attention. In this paper, the multigranulation technique is introduced into incomplete information systems. Both tolerance relations and maximal consistent blocks are used to construct multigranulation rough sets. Not only are the basic properties about these models studied, but also the relationships between different multigranulation rough sets are explored. It is shown that by using maximal consistent blocks, the greater lower approximation and the same upper approximation as from tolerance relations can be obtained. Such a result is consistent with that of a single-granulation framework.
基金supported by grants from the National Natural Science Foundation of China(Nos.60903110, 60773133 and 70971080)the Natural Science Foundation of Shanxi Province in China(Nos.2009021017-1, 2008011038).
文摘With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent granules among multiple granular spaces on the universe.Then,we investigate several important properties of the pessimistic rough decision model.With introduction of the rough set model,we have developed two types of multigranulation rough sets(MGRS):optimistic rough decision and pessimistic rough decision. These multigranulation rough set models provide a kind of effective approach for problem solving in the context of multi granulations.
文摘为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多粒度证据融合决策模型.首先,提出多粒度区间二型模糊概率粗糙集模型;然后,通过离差最大化法和熵权法计算决策者权重和属性权重,依据多粒度概率粗糙集和MULTIMOORA法建立区间二型模糊多属性群决策模型,通过源自D-S证据理论的证据融合方法融合得出决策结果.通过钢铁行业耗能的实例,证明提出方法的可行性与有效性,总体上,提出的决策模型具备一定的容错力,有助于获得强解释力的稳健型决策结果.
文摘知识约简是粗糙集研究的内容之一,粒度计算问题结合粗糙集的理论和应用可以解决一些问题.在一个由信息系统构成的多粒度数据集上,利用提出的Seeking Common Ground While Eliminating Differences(SCED)模型和给出的算法,较好地解决了一些多粒度下的属性约简,所给出的实例从时间复杂度上也充分说明了模型和算法的有效性.