We conduct a study on the superlinear transport of multilayer graphene channels that partially or completely locate on silicon which is pre-etched by inductively coupled plasma (ICP). By fabricating a multilayer-gra...We conduct a study on the superlinear transport of multilayer graphene channels that partially or completely locate on silicon which is pre-etched by inductively coupled plasma (ICP). By fabricating a multilayer-graphene field-effect transistor on a Si/SiO2 substrate, we obtain that the superlinearity results from the interaction between the multilayer graphene sheet and the ICP-etched silicon, In addition, the observed superlinear transport of the device is found to be consistent with the prediction of Schwinger's mechanism. In the high bias regime, the values of a increase draxnatically from 1.02 to 1.40. The strength of the electric field corresponding to the on-start of electron-hole pair production is calculated to be 5 × 10^4 Vim. Our work provides an experimental observation of the nonlinear transport of the multilayer graphene.展开更多
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0402404the High-Tech Research and Development Program of China under Grant Nos 2013AA031401,2015AA016902 and 2015AA016904the National Natural Science Foundation of China under Grant Nos 61674136,61176053,61274069 and 61435002
文摘We conduct a study on the superlinear transport of multilayer graphene channels that partially or completely locate on silicon which is pre-etched by inductively coupled plasma (ICP). By fabricating a multilayer-graphene field-effect transistor on a Si/SiO2 substrate, we obtain that the superlinearity results from the interaction between the multilayer graphene sheet and the ICP-etched silicon, In addition, the observed superlinear transport of the device is found to be consistent with the prediction of Schwinger's mechanism. In the high bias regime, the values of a increase draxnatically from 1.02 to 1.40. The strength of the electric field corresponding to the on-start of electron-hole pair production is calculated to be 5 × 10^4 Vim. Our work provides an experimental observation of the nonlinear transport of the multilayer graphene.