Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are dis- cussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZ...Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are dis- cussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 ℃. These ferrite materials are research focuses and are applied in many ways in electronics.展开更多
CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics were studied to prepare high-quality multilayer piezoelectric actuators with pure Ag electrodes at 900 ℃. CuO addition not only reduced th...CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics were studied to prepare high-quality multilayer piezoelectric actuators with pure Ag electrodes at 900 ℃. CuO addition not only reduced the sintering temperature significantly from 1260 ℃ to 900 ℃ but also improved the ceramic density to 7.742 g/cm3. The 0.7 wt.% CuO added ceramic sintered at 900 ℃ shows the remnant polarization (Pr) of 40 μC/cm2, 0.28% strain at 40 kV/cm, and the piezoelectric coefficient (d33) of 630 pC/N. This ceramic shows a strong relaxor characteristic with a Curie temperature of 200 ℃. Furthermore, the 0.7 wt.% CuO added ceramic and pure Ag electrodes were co-fired at 900 ℃ to prepare a high-quality multilayer piezoelectric actuator with a d33 of over 450 pC/N per ceramic layer.展开更多
The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation abov...The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation above 360 MHz frequency band is successfully manufactured in an LTCC substrate with 40 pm layer thickness. The overall size of the filter is 2.0 mm×1.2 mm×0.9 mm. A good coincidence between the measured results and the full-wave electromagnetic designed responses is observed.展开更多
In this work,Li_(2)O_(3)was added into 0.7BiFeO_(3)-0.3BaZr_(0.02)Ti_(0.98)O_(3)-0.01molMnO_(2)(70BFBTMn)piezoelectric ceramics to reduce their sintering temperatures.70BFBTMn ceramics were sintered by a conventional ...In this work,Li_(2)O_(3)was added into 0.7BiFeO_(3)-0.3BaZr_(0.02)Ti_(0.98)O_(3)-0.01molMnO_(2)(70BFBTMn)piezoelectric ceramics to reduce their sintering temperatures.70BFBTMn ceramics were sintered by a conventional solid reaction method,and their structural,dielectric,piezoelectric and ferroelectric properties were studied.These results indicate that 0.5%(mole)Li_(2)O_(3)is the optimized content and it can reduce the sintering temperature by 100°C,making the possibility of the piezoelectric ceramics cofiring with Ag electrodes at low temperatures to manufacture multilayer piezoelectric actuators.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB933100)the National Natural Science Foundation of China(Grant Nos.51132003,61021061,and 61171047)the Second Item of Strongpoint Industry of Guangdong Province,China(Grant No.2012A090100001)
文摘Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are dis- cussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 ℃. These ferrite materials are research focuses and are applied in many ways in electronics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51472118,51602156,52177072,and 11274174)the Fundamental Research Funds for the Central Universities,China(Grant Nos.30916011104 and 30916011208)
文摘CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics were studied to prepare high-quality multilayer piezoelectric actuators with pure Ag electrodes at 900 ℃. CuO addition not only reduced the sintering temperature significantly from 1260 ℃ to 900 ℃ but also improved the ceramic density to 7.742 g/cm3. The 0.7 wt.% CuO added ceramic sintered at 900 ℃ shows the remnant polarization (Pr) of 40 μC/cm2, 0.28% strain at 40 kV/cm, and the piezoelectric coefficient (d33) of 630 pC/N. This ceramic shows a strong relaxor characteristic with a Curie temperature of 200 ℃. Furthermore, the 0.7 wt.% CuO added ceramic and pure Ag electrodes were co-fired at 900 ℃ to prepare a high-quality multilayer piezoelectric actuator with a d33 of over 450 pC/N per ceramic layer.
基金This work was supported by the National Nature Science Foundation of China under Grant No. 60425102.
文摘The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation above 360 MHz frequency band is successfully manufactured in an LTCC substrate with 40 pm layer thickness. The overall size of the filter is 2.0 mm×1.2 mm×0.9 mm. A good coincidence between the measured results and the full-wave electromagnetic designed responses is observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11704242,51872180 and 51672169)the Natural Science Foundation of Shanghai,China(Grant Nos.17ZR1447200 and 18ZR1414800).
文摘In this work,Li_(2)O_(3)was added into 0.7BiFeO_(3)-0.3BaZr_(0.02)Ti_(0.98)O_(3)-0.01molMnO_(2)(70BFBTMn)piezoelectric ceramics to reduce their sintering temperatures.70BFBTMn ceramics were sintered by a conventional solid reaction method,and their structural,dielectric,piezoelectric and ferroelectric properties were studied.These results indicate that 0.5%(mole)Li_(2)O_(3)is the optimized content and it can reduce the sintering temperature by 100°C,making the possibility of the piezoelectric ceramics cofiring with Ag electrodes at low temperatures to manufacture multilayer piezoelectric actuators.