Accurate and computationally efficient means of electrocardiography (ECG) arrhythmia detec-tion has been the subject of considerable re-search efforts in recent years. Intelligent com-puting tools such as artificial n...Accurate and computationally efficient means of electrocardiography (ECG) arrhythmia detec-tion has been the subject of considerable re-search efforts in recent years. Intelligent com-puting tools such as artificial neural network (ANN) and fuzzy logic approaches are demon-strated to be competent when applied individu-ally to a variety of problems. Recently, there has been a growing interest in combining both of these approaches, and as a result, adaptive neural fuzzy filters (ANFF) [1] have been evolved. This study presents a comparative study of the classification accuracy of ECG signals using (MLP) with back propagation training algorithm, and a new adaptive neural fuzzy filter architec-ture (ANFF) for early diagnosis of ECG ar-rhythmia. ANFF is inherently a feed forward multilayered connectionist network which can learn by itself according to numerical training data or expert knowledge represented by fuzzy if-then rules [1]. In this paper we used an adap-tive neural fuzzy filter as an ECG beat classifier. We combined 3 famous wavelet transforms and used them mid 4 the order AR model coefficient as features. Our results suggest that a new proposed classifier (ANFF) with these features can generalize better than ordinary MLP archi-tecture and also learn better and faster. The results of proposed method show high accu-racy in ECG beat classification (97.6%) with 100% specificity and high sensitivity.展开更多
A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a n...A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are included to demonstrate the effectiveness of the approach.展开更多
文摘Accurate and computationally efficient means of electrocardiography (ECG) arrhythmia detec-tion has been the subject of considerable re-search efforts in recent years. Intelligent com-puting tools such as artificial neural network (ANN) and fuzzy logic approaches are demon-strated to be competent when applied individu-ally to a variety of problems. Recently, there has been a growing interest in combining both of these approaches, and as a result, adaptive neural fuzzy filters (ANFF) [1] have been evolved. This study presents a comparative study of the classification accuracy of ECG signals using (MLP) with back propagation training algorithm, and a new adaptive neural fuzzy filter architec-ture (ANFF) for early diagnosis of ECG ar-rhythmia. ANFF is inherently a feed forward multilayered connectionist network which can learn by itself according to numerical training data or expert knowledge represented by fuzzy if-then rules [1]. In this paper we used an adap-tive neural fuzzy filter as an ECG beat classifier. We combined 3 famous wavelet transforms and used them mid 4 the order AR model coefficient as features. Our results suggest that a new proposed classifier (ANFF) with these features can generalize better than ordinary MLP archi-tecture and also learn better and faster. The results of proposed method show high accu-racy in ECG beat classification (97.6%) with 100% specificity and high sensitivity.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.61225014)
文摘A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized. The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are included to demonstrate the effectiveness of the approach.