期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多目标进化算法中选择策略的研究 被引量:5
1
作者 谢承旺 丁立新 《计算机科学》 CSCD 北大核心 2009年第9期167-172,共6页
在多目标进化算法(multiobjective evolutionary algorithms,MOEAs)的文献中,对算法的选择策略进行系统研究的还很少,而MOEAs的选择策略不仅引导算法的搜索过程、决定搜索的方向而且对算法的收敛性有重要的影响,它是算法能否成功求解多... 在多目标进化算法(multiobjective evolutionary algorithms,MOEAs)的文献中,对算法的选择策略进行系统研究的还很少,而MOEAs的选择策略不仅引导算法的搜索过程、决定搜索的方向而且对算法的收敛性有重要的影响,它是算法能否成功求解多目标优化问题的关键因素之一。在统一的框架下,首先讨论了多目标优化问题中适应度函数的构造问题,然后根据MOEAs的选择机制和原理将它们的选择策略重新分成了6种类型。一般文献中很少对多目标进化算法的操作算子采用符号化描述,这样不利于对算子的深层次理解,符号化描述了各类选择策略的操作机制和原理,并分析了各类策略的优劣性。最后,从理论上证明了具备一定特征的多目标进化算法的收敛性,证明的过程表明了将算法运行终止时得到的Pknown作为多目标优化问题的Pareto最优解集或近似最优解集的合理性。 展开更多
关键词 多目标进化算法 适应度函数 选择策略 收敛性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部