Three-dimensional Heisenberg model in the form of a tetrahedron lattice is investigated. The concurrence and multipartite entanglement are calculated through 2-concurrence C and 4-concurrence C4. The concurrence C and...Three-dimensional Heisenberg model in the form of a tetrahedron lattice is investigated. The concurrence and multipartite entanglement are calculated through 2-concurrence C and 4-concurrence C4. The concurrence C and multipartite entanglement G4 depend on different coupling strengths Ji and are decreased when the temperature T is increased. For a symmetric tetrahedron lattice, the concurrence C is symmetric about J1 when J~ is negative while the multipartite entanglement G4 is symmetric about J1 when J2 〈 2. For a regular tetrahedron lattice, the concurrence G of ground state is 1/3 for ferromagnetic case while G = 0 for antiferromagnetic ca.se. However, there is no multipartitc entanglement since C4=0 in a regular tetrahedron lattice. The external magnetic field 13 can increase the maximum value of the concurrence GB and induce two or three peaks in Cn. There is a peak in the multipartite entanglement G4 B when G4B is varied as a function of the temperature T. This peak is mainly induced by the magnetic field B.展开更多
We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is u...We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.展开更多
The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY model are investigated. The multipartite entanglement increases as a function of the inverse strength of the e...The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY model are investigated. The multipartite entanglement increases as a function of the inverse strength of the external field when the degree of anisotropy is finite. There are two peaks when the degree of anisotropy is γ=±1. When the degree of anisotropy increases further, the multipartite entanglement will decrease and tend to a constant. The threshold of the inverse strength of the external field for generating multipartite entanglement generally decreases with the increasing of qubits.展开更多
We have studied the generation of multipartite entangled states for the superconducting phase qubits. The experiments performed in this direction have the capacity to generate several specific multipartite entangled s...We have studied the generation of multipartite entangled states for the superconducting phase qubits. The experiments performed in this direction have the capacity to generate several specific multipartite entangled states for three and four qubits. Our studies are also important as we have used a computable measure of genuine multipartite entanglement whereas all previous studies analyzed certain probability amplitudes. As a comparison, we have reviewed the generation of multipartite entangled states via von Neumann projective measurements.展开更多
We propose a method of constructing the separability criteria for multipartite quantum states on the basis of entanglement witnesses. The entanglement witnesses are obtained by finding the maximal expectation values o...We propose a method of constructing the separability criteria for multipartite quantum states on the basis of entanglement witnesses. The entanglement witnesses are obtained by finding the maximal expectation values of Hermitian operators and then optimizing over all possible Hermitian operators. We derive a set of tripartite separability criteria for the four-qubit Greenberger-Horne-Zeilinger (GHZ) diagonal states. The derived criterion set contains four criteria that are necessary and sufficient for the tripartite separability of the highly symmetric four-qubit GHZ diagonal states; the criteria completely account for the numerically obtained boundaries of the tripartite separable state set. One of the criteria is just the tripartite separability criterion of the four-qubit generalized Werner states.展开更多
We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (D/T) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is ...We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (D/T) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is closely related with the interference of dipole-microcavity systems, and we can generate different classes of multi- partite entanglement, e.g., the Greenberger-Horne-Zeilinger state, the W state, and the Dicke state, of the di- pole emitters just by choosing an appropriate frequency of the incident photon. Benefiting from the DIT effect, the schemes may work in the bad or low-Q cavity regime only if the large Purcell factor of the dipole-microcavity system is fulfilled, and they are also insensitive to experimental noise, which may be feasible with present acces- sible technology.展开更多
Quantum entanglement is an essential resource for quantum information processing, either for quantum communication or for quantum computation. The multi- partite case of entanglement, especially the so called gen- uin...Quantum entanglement is an essential resource for quantum information processing, either for quantum communication or for quantum computation. The multi- partite case of entanglement, especially the so called gen- uine multipartite entanglement, has significant importance for multipartite quantum information protocols. Thus, it is a natural requirement to experimentally verify multipartite quantum entanglement when performing many quantum int^rmation tasks. However, this is often technically chal- lenging due to the difficulty of building a shared reference lYame among all involved parties, especially when these parties are distant l^om each other. In this paper, we experimentally verify the genuine tripartite entanglement of a three-photon Greenberger-Horne-Zeilinger state without shared reference frames. A high probability 0.79 of successfully verifying the genuine tripartite entanglement is achieved when no reference frame is shared. In the case of sharing only one common axis, an even higher success probability of 0.91 is achieved.展开更多
Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dis...Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.展开更多
The multipartite Greenberger-Horne-Zeilinger(GHZ)states play an important role in large-scale quantum information processing.We utilize the polychromatic driving fields and the engineered spontaneous emissions of Rydb...The multipartite Greenberger-Horne-Zeilinger(GHZ)states play an important role in large-scale quantum information processing.We utilize the polychromatic driving fields and the engineered spontaneous emissions of Rydberg states to dissipatively drive three-and four-partite neutral atom systems into the steady GHZ states,at the presence of the nextnearest neighbor interaction of excited Rydberg states.Furthermore,the introduction of quantum Lyapunov control can help us optimize the dissipative dynamics of the system so as to shorten the convergence time of the target state,improve the robustness against the spontaneous radiations of the excited Rydberg states,and release the limiting condition for the strengths of the polychromatic driving fields.Under the feasible experimental conditions,the fidelities of three-and four-partite GHZ states can be stabilized at 99.24%and 98.76%,respectively.展开更多
We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which on...We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximal1y Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglernent of multiple coherent and squeezing states with desired amplitudes in a reasonable time.展开更多
By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their S...By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their Schmidt decompositions and give their entangling operators. Furthermore, based on the above analysis we also find the n-mode Wigner operator. In doing so we may identify the physical meaning of the marginal distribution of the Wigner function.展开更多
We demonstrate that the n-partite continuous-variable entanglement can be unconditionally prepared among n parties that share no common past, from n two-mode squeezed states. Both CHZ-like and cluster-like states can ...We demonstrate that the n-partite continuous-variable entanglement can be unconditionally prepared among n parties that share no common past, from n two-mode squeezed states. Both CHZ-like and cluster-like states can be generated for any nonzero squeezing in the entangled sources. An application of the resulting multipartite entangled state to a teleportation network is illustrated.展开更多
This paper proposes a scheme to generate, in an ion-trap, a type of multipartite maximally entangled state which was first introduced by Chen et al. [Chen P X, Zhu S Y and Guo G C 2006 Phys. Rev. A 74 032324]. The max...This paper proposes a scheme to generate, in an ion-trap, a type of multipartite maximally entangled state which was first introduced by Chen et al. [Chen P X, Zhu S Y and Guo G C 2006 Phys. Rev. A 74 032324]. The maximum entanglement property of these states is examined. It also demonstrates how to discriminate among these states in the ion-trap.展开更多
We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variable...We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.展开更多
We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is ...We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required, and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.展开更多
We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonie qubits, we can transform it into a polaritonic qubit-qubit array...We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonie qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.展开更多
There are many different classifications of entanglement for multipartite quantum systems,one of which is based on the number of the unentangled particles.In this paper,we mainly study the quantum states containing at...There are many different classifications of entanglement for multipartite quantum systems,one of which is based on the number of the unentangled particles.In this paper,we mainly study the quantum states containing at most k−1 unentangled particles and provide several entanglement criteria based on the different forms of inequalities,which can both identify quantum states containing at most k−1 unentangled particles.We show that these criteria are more effective for some states by concrete examples.展开更多
We investigate the influences of non-Markovian dissipation and global dephasing process on the dynamical behaviors of global discord among four qubits.We find that for the non-Markovian dissipation model W state is th...We investigate the influences of non-Markovian dissipation and global dephasing process on the dynamical behaviors of global discord among four qubits.We find that for the non-Markovian dissipation model W state is the most robust to decoherence compared to Dicke and GHZ states;however,for the global dephasing model Dicke state is the most robust to decoherence among them.Also the dynamical behaviors of global quantum discord are quite different from that of the multipartite entanglement for the non-Markovian dissipation model,while they are very similar to each other for the global dephasing model.展开更多
We exactly evaluate the entanglement of a six vertex and a nine vertex graph states which correspond to non "two-colorable" graphs. The upper bound of entanglement for five vertex ring graph state is improved to 2.9...We exactly evaluate the entanglement of a six vertex and a nine vertex graph states which correspond to non "two-colorable" graphs. The upper bound of entanglement for five vertex ring graph state is improved to 2.9275, less than the upper bound determined by local operations and classical communication. An upper bound of entanglement is proposed based on the definition of graph state.展开更多
Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication.Distribution of photonic entangled states using optical fiber links is a fundamental buildi...Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication.Distribution of photonic entangled states using optical fiber links is a fundamental building block toward quantum networks.Among the different degrees of freedom,orbital angular momentum(OAM)is one of the most promising due to its natural capability to encode high dimensional quantum states.We experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs.To this end,we exploit a recently developed air-core fiber that supports OAM modes.High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation and by violations of Bell inequalities and multipartite entanglement tests.The results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.展开更多
基金The project supported by the SpeciaLized Research Fund for the DoctoraL Program of Higher Education under Grant No. 20050285002 . It is our pleasure to thank Yin-Sheng Ling and JianXing Fang for their helpful discussions.
文摘Three-dimensional Heisenberg model in the form of a tetrahedron lattice is investigated. The concurrence and multipartite entanglement are calculated through 2-concurrence C and 4-concurrence C4. The concurrence C and multipartite entanglement G4 depend on different coupling strengths Ji and are decreased when the temperature T is increased. For a symmetric tetrahedron lattice, the concurrence C is symmetric about J1 when J~ is negative while the multipartite entanglement G4 is symmetric about J1 when J2 〈 2. For a regular tetrahedron lattice, the concurrence G of ground state is 1/3 for ferromagnetic case while G = 0 for antiferromagnetic ca.se. However, there is no multipartitc entanglement since C4=0 in a regular tetrahedron lattice. The external magnetic field 13 can increase the maximum value of the concurrence GB and induce two or three peaks in Cn. There is a peak in the multipartite entanglement G4 B when G4B is varied as a function of the temperature T. This peak is mainly induced by the magnetic field B.
基金Supported by National Natural Science Foundation of China under Grant Nos.11004050 and 10874019Key Project of Chinese Ministry of Education under Grant No.211119+2 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant Nos.10B013 and 09A013Excellent Talents Program of Hengyang Normal University of China under Grant No.2010YCJH01Science Foundation of Hengyang Normal University of China under Grant No.10B69
文摘We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20050285002National Natural Science Foundation of China under Grant No.10774108
文摘The effects of anisotropy and magnetic field on multipartite entanglement of ground state in Heisenberg XY model are investigated. The multipartite entanglement increases as a function of the inverse strength of the external field when the degree of anisotropy is finite. There are two peaks when the degree of anisotropy is γ=±1. When the degree of anisotropy increases further, the multipartite entanglement will decrease and tend to a constant. The threshold of the inverse strength of the external field for generating multipartite entanglement generally decreases with the increasing of qubits.
基金supported by the EU(Marie Curie CIG 293993/ENFOQI)the BMBF(ChistEra Project QUASAR)
文摘We have studied the generation of multipartite entangled states for the superconducting phase qubits. The experiments performed in this direction have the capacity to generate several specific multipartite entangled states for three and four qubits. Our studies are also important as we have used a computable measure of genuine multipartite entanglement whereas all previous studies analyzed certain probability amplitudes. As a comparison, we have reviewed the generation of multipartite entangled states via von Neumann projective measurements.
文摘We propose a method of constructing the separability criteria for multipartite quantum states on the basis of entanglement witnesses. The entanglement witnesses are obtained by finding the maximal expectation values of Hermitian operators and then optimizing over all possible Hermitian operators. We derive a set of tripartite separability criteria for the four-qubit Greenberger-Horne-Zeilinger (GHZ) diagonal states. The derived criterion set contains four criteria that are necessary and sufficient for the tripartite separability of the highly symmetric four-qubit GHZ diagonal states; the criteria completely account for the numerically obtained boundaries of the tripartite separable state set. One of the criteria is just the tripartite separability criterion of the four-qubit generalized Werner states.
基金supported by the National Natural Science Foundation of China(Nos.11405052,11504104,and11704115)the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control(No.QSQC1409)
文摘We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (D/T) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is closely related with the interference of dipole-microcavity systems, and we can generate different classes of multi- partite entanglement, e.g., the Greenberger-Horne-Zeilinger state, the W state, and the Dicke state, of the di- pole emitters just by choosing an appropriate frequency of the incident photon. Benefiting from the DIT effect, the schemes may work in the bad or low-Q cavity regime only if the large Purcell factor of the dipole-microcavity system is fulfilled, and they are also insensitive to experimental noise, which may be feasible with present acces- sible technology.
基金supported by the National Natural Science Foundation of China(6132790161490711+7 种基金11274289113254196122502511474268and 11374288)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB01030300)the National Youth Top Talent Support Program of National High-level Personnel of Special Support Programthe Fundamental Research Funds for the Central Universities(WK2470000018)
文摘Quantum entanglement is an essential resource for quantum information processing, either for quantum communication or for quantum computation. The multi- partite case of entanglement, especially the so called gen- uine multipartite entanglement, has significant importance for multipartite quantum information protocols. Thus, it is a natural requirement to experimentally verify multipartite quantum entanglement when performing many quantum int^rmation tasks. However, this is often technically chal- lenging due to the difficulty of building a shared reference lYame among all involved parties, especially when these parties are distant l^om each other. In this paper, we experimentally verify the genuine tripartite entanglement of a three-photon Greenberger-Horne-Zeilinger state without shared reference frames. A high probability 0.79 of successfully verifying the genuine tripartite entanglement is achieved when no reference frame is shared. In the case of sharing only one common axis, an even higher success probability of 0.91 is achieved.
基金Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Taiyuan 030006,China(Grant No.KF201401)the National Natural Science Foundation of China(Grant No.11404084)
文摘Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774047 and 12047525)。
文摘The multipartite Greenberger-Horne-Zeilinger(GHZ)states play an important role in large-scale quantum information processing.We utilize the polychromatic driving fields and the engineered spontaneous emissions of Rydberg states to dissipatively drive three-and four-partite neutral atom systems into the steady GHZ states,at the presence of the nextnearest neighbor interaction of excited Rydberg states.Furthermore,the introduction of quantum Lyapunov control can help us optimize the dissipative dynamics of the system so as to shorten the convergence time of the target state,improve the robustness against the spontaneous radiations of the excited Rydberg states,and release the limiting condition for the strengths of the polychromatic driving fields.Under the feasible experimental conditions,the fidelities of three-and four-partite GHZ states can be stabilized at 99.24%and 98.76%,respectively.
基金The project partially supported by the National Fundamental Research Program of China under Grant No. 2005CB724508 and National Natural Science Foundation of China under Grant Nos. 60478029, 10575040, and 90503010 Acknowledgments The authors thank Prof. Ying Wu for many enlighten- ing discussions.
文摘We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximal1y Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglernent of multiple coherent and squeezing states with desired amplitudes in a reasonable time.
文摘By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their Schmidt decompositions and give their entangling operators. Furthermore, based on the above analysis we also find the n-mode Wigner operator. In doing so we may identify the physical meaning of the marginal distribution of the Wigner function.
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 10674009,10874004 and 10821062)the National Key Basic Research Program of China (Grant No. 2006CB921601)
文摘We demonstrate that the n-partite continuous-variable entanglement can be unconditionally prepared among n parties that share no common past, from n two-mode squeezed states. Both CHZ-like and cluster-like states can be generated for any nonzero squeezing in the entangled sources. An application of the resulting multipartite entangled state to a teleportation network is illustrated.
基金Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947017/A05)
文摘This paper proposes a scheme to generate, in an ion-trap, a type of multipartite maximally entangled state which was first introduced by Chen et al. [Chen P X, Zhu S Y and Guo G C 2006 Phys. Rev. A 74 032324]. The maximum entanglement property of these states is examined. It also demonstrates how to discriminate among these states in the ion-trap.
基金The project supported by 0pen Foundation of Laboratory of High-Intensity 0ptics, Shanghai Institute of 0ptics and Fine Mechanics
文摘We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required, and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.
基金Supported by National Natural Science Foundation of China under Grant No. 10974016
文摘We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonie qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.
基金supported by the National Natural Science Foundation of China(Grant Nos.12071110,11701135 and 11947073)Hebei Natural Science Foundation of China(Grant Nos.A2020205014,A2018205125,and A2017403025)+1 种基金Science and Technology Project of Hebei Education Department,China(Grant Nos.ZD2020167 and ZD2021066)the Foundation of Hebei GEO University(Grant No.BQ201615)。
文摘There are many different classifications of entanglement for multipartite quantum systems,one of which is based on the number of the unentangled particles.In this paper,we mainly study the quantum states containing at most k−1 unentangled particles and provide several entanglement criteria based on the different forms of inequalities,which can both identify quantum states containing at most k−1 unentangled particles.We show that these criteria are more effective for some states by concrete examples.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274043 and 11375025
文摘We investigate the influences of non-Markovian dissipation and global dephasing process on the dynamical behaviors of global discord among four qubits.We find that for the non-Markovian dissipation model W state is the most robust to decoherence compared to Dicke and GHZ states;however,for the global dephasing model Dicke state is the most robust to decoherence among them.Also the dynamical behaviors of global quantum discord are quite different from that of the multipartite entanglement for the non-Markovian dissipation model,while they are very similar to each other for the global dephasing model.
文摘We exactly evaluate the entanglement of a six vertex and a nine vertex graph states which correspond to non "two-colorable" graphs. The upper bound of entanglement for five vertex ring graph state is improved to 2.9275, less than the upper bound determined by local operations and classical communication. An upper bound of entanglement is proposed based on the definition of graph state.
基金P.Kristensen from OFS-Fitel for the fiber fabrication,and D.Poderini for many advices on the software development.Funding Information:This work was supported by the Center of Excellence,SPOC-Silicon Photonics for Optical Communications(ref DNRF123)by the People Programme(Marie Curie Actions)of the European Union’s Seventh Framework Programme(FP7/2007-2013)under REA grant agreement no.609405(COFUNDPostdocDTU)+1 种基金and by the ERC-Advanced grant PHOSPhOR(Photonics of Spin-Orbit Optical PhenomenaGrant Agreement No.694683).G.C.acknowledges Becas Chile and Conicyt.
文摘Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication.Distribution of photonic entangled states using optical fiber links is a fundamental building block toward quantum networks.Among the different degrees of freedom,orbital angular momentum(OAM)is one of the most promising due to its natural capability to encode high dimensional quantum states.We experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs.To this end,we exploit a recently developed air-core fiber that supports OAM modes.High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation and by violations of Bell inequalities and multipartite entanglement tests.The results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.