We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routi...We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routing protocols extended from AODV which is a well-known single path routing protocol. Multipath routing protocols indicate good performance in the reduction of route discovery latency and unnecessary routing packets in simulations. We show that the route establishment using source route lists provided by us (Hu and Johnson, 2002) can reduce the route discovery latency, select stable routes automatically, and work well for live video streaming without limitation of the hop count based approaches. We evaluate this proposed method compared with the original AODV by using eight laptop PCs and demonstrate live streaming experiments.展开更多
Ad Hoc网络具有移动性和链路高失效率,多径路由的提出就是为了减少由于链路失效造成的路由开销增加和分组投递率的减少。现有的多径路由追求链路的独立性大多选择不相交多径,但不相交多径在主路径失效后提供的备用路径不一定最优。在AOD...Ad Hoc网络具有移动性和链路高失效率,多径路由的提出就是为了减少由于链路失效造成的路由开销增加和分组投递率的减少。现有的多径路由追求链路的独立性大多选择不相交多径,但不相交多径在主路径失效后提供的备用路径不一定最优。在AODV协议的基础上提出了一种相交多径的方案(M_AOMDV)。仿真结果表明M_AOMDV降低了时延和开销,提高了网络性能。展开更多
Mobile Ad-hoc network (MANET) is an infrastructure-less and dynamic network. Routing in such a network is a challenge due to the mobility of its nodes. Multipath routing protocols try to improve the performance by fin...Mobile Ad-hoc network (MANET) is an infrastructure-less and dynamic network. Routing in such a network is a challenge due to the mobility of its nodes. Multipath routing protocols try to improve the performance by finding more than one path towards the destination which could be kept as alternatives should the main path breaks. Stability-based Partially Disjoint AOMDV (SPDA) protocol has been proposed to tackle problems resulted from the very dynamic topology of MANETs. SPDA finds partially disjoint paths that are more stable than the maximally disjoint ones in order to increase paths lifetime as well as the availability of such multipaths. When choosing partially disjoint paths, SPDA does not take into consideration the number of hops of each path. Moreover, SPDA transmits packets over the shortest path until it becomes invalid before it tries to utilize other alternative paths. In this paper we improve SPDA by adding the number of nodes each path passes through to the selection criteria. In the Improved SPDA (ISPDA), the available alternative paths have been utilized to transmit packets in parallel. We compare the SPDA and ISPDA regarding the throughput and delay. Results show the superiority of ISPDA over the original one.展开更多
文摘We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routing protocols extended from AODV which is a well-known single path routing protocol. Multipath routing protocols indicate good performance in the reduction of route discovery latency and unnecessary routing packets in simulations. We show that the route establishment using source route lists provided by us (Hu and Johnson, 2002) can reduce the route discovery latency, select stable routes automatically, and work well for live video streaming without limitation of the hop count based approaches. We evaluate this proposed method compared with the original AODV by using eight laptop PCs and demonstrate live streaming experiments.
文摘Mobile Ad-hoc network (MANET) is an infrastructure-less and dynamic network. Routing in such a network is a challenge due to the mobility of its nodes. Multipath routing protocols try to improve the performance by finding more than one path towards the destination which could be kept as alternatives should the main path breaks. Stability-based Partially Disjoint AOMDV (SPDA) protocol has been proposed to tackle problems resulted from the very dynamic topology of MANETs. SPDA finds partially disjoint paths that are more stable than the maximally disjoint ones in order to increase paths lifetime as well as the availability of such multipaths. When choosing partially disjoint paths, SPDA does not take into consideration the number of hops of each path. Moreover, SPDA transmits packets over the shortest path until it becomes invalid before it tries to utilize other alternative paths. In this paper we improve SPDA by adding the number of nodes each path passes through to the selection criteria. In the Improved SPDA (ISPDA), the available alternative paths have been utilized to transmit packets in parallel. We compare the SPDA and ISPDA regarding the throughput and delay. Results show the superiority of ISPDA over the original one.