Due to high cost of full-scale experimental setup, this study presents a numerical model on fatigue behaviours of offshore pipeline with multiple coplanar cracks under cyclic tensile loadings. The validation on numeri...Due to high cost of full-scale experimental setup, this study presents a numerical model on fatigue behaviours of offshore pipeline with multiple coplanar cracks under cyclic tensile loadings. The validation on numerical results is made by other researchers' experimental results, and significant parameters affecting fatigue crack growth are studied.展开更多
Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneuro...Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits.展开更多
The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, where...The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples shaw that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks ate in good agreement with other analytical solutions.展开更多
The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric sin...The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.展开更多
Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile...Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is autofrettage-type dependent. Swage and Hydraulic autofrettage RSFs differ substantially from each other. The disadvantageous effect of Swage autofrettage is much greater than that resulting from Hydraulic autofrettage. The results also emphasize the significance of the Bauschinger effect and the importance of the 3-D analysis.展开更多
Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation i...Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation is time consuming. In the present work dimensional analysis has been presented to obtain a new relationship between input parameters and resulting residual deformations during line heating process. The temperature distribution and residual deformations for 6 mm, 8 mm, 10 mm and 12 mm thick steel plates were numerically estimated and compared with experimental and published results. Extensive data generated through a validated FE model were used to find co-relationship between the input parameters and the resulting residual deformation by multiple regression analysis. The results obtained from the deformation equations developed in this work compared well with those of the FE analysis with a drop in the computation time in the order of 100 (computational time required for FE analysis is around 7 200 second to 9 000 seconds and where the time required for getting the residual deformation by developed equations is only 60 to 90 seconds).展开更多
In this study forests were visualized at various scales by placing individual trees into a forest with realistic sizes and densities. Tree images were used from two sources: high quality field photos and images create...In this study forests were visualized at various scales by placing individual trees into a forest with realistic sizes and densities. Tree images were used from two sources: high quality field photos and images created using graphic design software. The terrain, species composition, and tree sizes and density from forest inventory were all represented in GIS data format. In addition, non-tree objects and features that are essential for close-to-reality visualization were combined with the tree images in a 3-D visualization software package. We further portrayed stand level effects by animating a simulated fly-through of a forest. To visualize temporal change, a case study of four different forest patches was animated. The advantages of this approach comparing to other visualization approaches are: (1) it represents the forests with realistic individual tree images; and (2) it maintains both visual and informational realism in a forest viewable from within-stand to landscape scales. Thus, this approach is realistic in two aspects. First, it is almost as realistic as a photograph, and secondly, its information content is actual forest composition, density, and height.展开更多
Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms, an analytical layer-element equation is established explicitly in the Laplace-Fourier tran...Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms, an analytical layer-element equation is established explicitly in the Laplace-Fourier transformed domain. A global matrix of layered soil can be obtained by assembling a set of analytical layer-elements, which is further solved in the transformed domain by considering boundary conditions. The numerical inversion of LaplaceFourier trans- form is employed to acquire the actual solution. Numerical analysis for 3-D consolidation with anisotropic permeability of a layered soil system is presented, and the influence of anisotropy of permeability on the consolidation behavior is discussed.展开更多
Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture beha...Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.展开更多
This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite s...This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite simple formulation that consists of a PN component for target capture and a coordination component for simultaneous arrival.The centralized algorithms come into effect when the global information of time-to-go estimation is obtained, whereas the decentralized algorithms have better performance when each missile can only collect information from neighbors.Numerical simulations demonstrate that the proposed coordination algorithms are feasible to perform the cooperative engagement of multiple missiles against both stationary and maneuvering targets.The effectiveness of the 3-D guidance laws is also discussed.展开更多
文摘Due to high cost of full-scale experimental setup, this study presents a numerical model on fatigue behaviours of offshore pipeline with multiple coplanar cracks under cyclic tensile loadings. The validation on numerical results is made by other researchers' experimental results, and significant parameters affecting fatigue crack growth are studied.
基金supported by the Chinese National General Program of the National Natural Science Foundation of China,No.82072162(to XY)。
文摘Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits.
基金the National Institute of Standards and Technologythe Army Office of Research
文摘The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples shaw that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks ate in good agreement with other analytical solutions.
文摘The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.
文摘Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is autofrettage-type dependent. Swage and Hydraulic autofrettage RSFs differ substantially from each other. The disadvantageous effect of Swage autofrettage is much greater than that resulting from Hydraulic autofrettage. The results also emphasize the significance of the Bauschinger effect and the importance of the 3-D analysis.
文摘Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation is time consuming. In the present work dimensional analysis has been presented to obtain a new relationship between input parameters and resulting residual deformations during line heating process. The temperature distribution and residual deformations for 6 mm, 8 mm, 10 mm and 12 mm thick steel plates were numerically estimated and compared with experimental and published results. Extensive data generated through a validated FE model were used to find co-relationship between the input parameters and the resulting residual deformation by multiple regression analysis. The results obtained from the deformation equations developed in this work compared well with those of the FE analysis with a drop in the computation time in the order of 100 (computational time required for FE analysis is around 7 200 second to 9 000 seconds and where the time required for getting the residual deformation by developed equations is only 60 to 90 seconds).
文摘In this study forests were visualized at various scales by placing individual trees into a forest with realistic sizes and densities. Tree images were used from two sources: high quality field photos and images created using graphic design software. The terrain, species composition, and tree sizes and density from forest inventory were all represented in GIS data format. In addition, non-tree objects and features that are essential for close-to-reality visualization were combined with the tree images in a 3-D visualization software package. We further portrayed stand level effects by animating a simulated fly-through of a forest. To visualize temporal change, a case study of four different forest patches was animated. The advantages of this approach comparing to other visualization approaches are: (1) it represents the forests with realistic individual tree images; and (2) it maintains both visual and informational realism in a forest viewable from within-stand to landscape scales. Thus, this approach is realistic in two aspects. First, it is almost as realistic as a photograph, and secondly, its information content is actual forest composition, density, and height.
基金Project supported by the National Natural Science Foundation of China (No. 50578121)
文摘Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms, an analytical layer-element equation is established explicitly in the Laplace-Fourier transformed domain. A global matrix of layered soil can be obtained by assembling a set of analytical layer-elements, which is further solved in the transformed domain by considering boundary conditions. The numerical inversion of LaplaceFourier trans- form is employed to acquire the actual solution. Numerical analysis for 3-D consolidation with anisotropic permeability of a layered soil system is presented, and the influence of anisotropy of permeability on the consolidation behavior is discussed.
文摘Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.
基金supported by the National Natural Science Foundation of China (Nos.61273349, 61203223)
文摘This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite simple formulation that consists of a PN component for target capture and a coordination component for simultaneous arrival.The centralized algorithms come into effect when the global information of time-to-go estimation is obtained, whereas the decentralized algorithms have better performance when each missile can only collect information from neighbors.Numerical simulations demonstrate that the proposed coordination algorithms are feasible to perform the cooperative engagement of multiple missiles against both stationary and maneuvering targets.The effectiveness of the 3-D guidance laws is also discussed.