期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Multiple model PHD filter for tracking sharply maneuvering targets using recursive RANSAC based adaptive birth estimation
1
作者 DING Changwen ZHOU Di +2 位作者 ZOU Xinguang DU Runle LIU Jiaqi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期780-792,共13页
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron... An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation. 展开更多
关键词 multitarget tracking probability hypothesis density(PHD)filter sharply maneuvering targets multiple model adaptive birth intensity estimation
下载PDF
Labeled box-particle CPHD filter for multiple extended targets tracking 被引量:4
2
作者 ZOU Zhibin SONG Liping CHENG Xuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期57-67,共11页
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ... In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results. 展开更多
关键词 EXTENDED target multiple TARGETS tracking labled boxparticle cardinalized probability hypothesis density (CPHD).
下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:3
3
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST DENSITY peak-based clustering (FDPC) multiple extended target partition probability hypothesis DENSITY (PHD) filter track.
下载PDF
Multiple extended target tracking algorithm based on Gaussian surface matrix 被引量:2
4
作者 Jinlong Yang Peng Li +1 位作者 Zhihua Li Le Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期279-289,共11页
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi... In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking. 展开更多
关键词 multiple extended target tracking irregular shape Gaussian surface matrix(GSM) probability hypothesis density(PHD)
下载PDF
IMM/MHT FUSING FEATURE INFORMATION IN VISUAL TRACKING
5
作者 Li Shuangquan Sun Shuyan Jiang Sheng Huang Zhipei Wu Jiankang 《Journal of Electronics(China)》 2009年第6期765-770,共6页
In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Int... In multi-target tracking,Multiple Hypothesis Tracking (MHT) can effectively solve the data association problem. However,traditional MHT can not make full use of motion information. In this work,we combine MHT with Interactive Multiple Model (IMM) estimator and feature fusion. New algorithm greatly improves the tracking performance due to the fact that IMM estimator provides better estimation and feature information enhances the accuracy of data association. The new algorithm is tested by tracking tropical fish in fish container. Experimental result shows that this algorithm can significantly reduce tracking lost rate and restrain the noises with higher computational effectiveness when compares with traditional MHT. 展开更多
关键词 multiple hypothesis tracking (mht Interacting multiple Model (IMM) Feature information fusion Data association
下载PDF
Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets 被引量:2
6
作者 Yang Jinlong Yang Le +1 位作者 Yuan Yunhao Ge Hongwei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1740-1748,共9页
The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledg... The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation(APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter(PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches. 展开更多
关键词 Adaptive parameter estimation multiple target tracking Multivariate Gaussian distribution Particle filter Probability hypothesis density
原文传递
Multi-target tracking algorithm of boost-phase ballistic missile defense 被引量:2
7
作者 Kangsheng Tian Feng Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期90-100,共11页
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ... Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA). 展开更多
关键词 ballistic missile multiple hypotheses tracking (mht linear assignment problem (LAP) hypothesis pruning.
下载PDF
Multiple hypothesis tracking based on the Shiryayev sequential probability ratio test 被引量:2
8
作者 Jinbin FU Jinping SUN +1 位作者 Songtao LU Yingjing ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第12期86-96,共11页
To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than ... To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than the new target spatial density, the original track score will be very close to the deletion threshold of the WSPRT. Consequently, all tracks, including target tracks, may easily be deleted, which means that the tracking performance is sensitive to the tracking environment. Meanwhile, if a target exists for a long time, its track will have a high score, which will make the track survive for a long time even after the target has disappeared. In this paper, to consider the relationship between the hypotheses of the test, we adopt the Shiryayev SPRT(SSPRT) for track management in MHT. By introducing a hypothesis transition probability, the original track score can increase faster, which solves the first problem. In addition, by setting an independent SSPRT for track deletion, the track score can decrease faster, which solves the second problem. The simulation results show that the proposed SSPRT-based MHT can achieve better tracking performance than MHT based on the WSPRT under a high false alarm spatial density. 展开更多
关键词 multiple target tracking multiple hypothesis tracking Shiryayev sequential probability ratio test track management track score
原文传递
A NEW DATA ASSOCIATION ALGORITHM USING PROBABILITY HYPOTHESIS DENSITY FILTER 被引量:2
9
作者 Huang Zhipei Sun Shuyan Wu Jiankang 《Journal of Electronics(China)》 2010年第2期218-223,共6页
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P... Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime. 展开更多
关键词 Multi-target trajectory tracking Probability hypothesis Density (PHD) Gaussian mixture ((]M) model multiple hypotheses detection Peak-to-track association
下载PDF
Free clustering optimal particle probability hypothesis density(PHD) filter
10
作者 李云湘 肖怀铁 +2 位作者 宋志勇 范红旗 付强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2673-2683,共11页
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori... As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments. 展开更多
关键词 multiple target tracking probability hypothesis density filter optimal sampling density particle filter random finite set clustering algorithm state extraction
下载PDF
基于分布式PMHT的多传感器多目标跟踪
11
作者 姚思亦 李万春 +2 位作者 高林 张花国 胡航玮 《系统工程与电子技术》 EI CSCD 北大核心 2024年第7期2184-2190,共7页
在目标跟踪领域,概率多假设跟踪(probability multiple hypothesis tracking,PMHT)算法作为一种批处理算法,计算量远远小于传统的多假设跟踪算法。当前,PMHT算法的应用受限于集中式处理,本文首先在传统算法的基础上对传感器网络下的算... 在目标跟踪领域,概率多假设跟踪(probability multiple hypothesis tracking,PMHT)算法作为一种批处理算法,计算量远远小于传统的多假设跟踪算法。当前,PMHT算法的应用受限于集中式处理,本文首先在传统算法的基础上对传感器网络下的算法似然进行了推导,得到多传感器算法下的关联后参数,接着基于共识性处理策略进行了混合共识,最后使用卡尔曼滤波完成了对目标参数的后验估计,使得PMHT算法能够被应用于不包含融合中心的全分布式传感器网络多目标跟踪。实验结果表明,在不同的杂波密度下,分布式PMHT在跟踪误差上相对于单传感器算法有着90%以上的改善效果,与集中式算法相比跟踪性能接近且运算速度更快。 展开更多
关键词 多目标跟踪 概率多假设跟踪 一致性共识 集中式状态估计 分布式状态估计
下载PDF
基于改进MHT的卫星电子信息舰船目标跟踪 被引量:3
12
作者 刘勇 姚力波 +2 位作者 修建娟 熊伟 周智敏 《系统工程与电子技术》 EI CSCD 北大核心 2017年第6期1189-1196,共8页
针对电子侦察卫星的重访时间较长且随机、舰船目标运动模型难于精确建立、数据杂波干扰强、多辐射源扩展目标跟踪等问题,结合卫星得到的辐射源特征参数提出了基于多假设跟踪(multiple hypothesis tracking,MHT)改进的舰船目标跟踪算法... 针对电子侦察卫星的重访时间较长且随机、舰船目标运动模型难于精确建立、数据杂波干扰强、多辐射源扩展目标跟踪等问题,结合卫星得到的辐射源特征参数提出了基于多假设跟踪(multiple hypothesis tracking,MHT)改进的舰船目标跟踪算法。首先分析了卫星电子信息舰船目标跟踪的特点;在没有辐射源类别与个数等先验知识的情况下,利用辐射源位置和载频等信息进行了两次聚类,实现了数据压缩以及杂波抑制;再在MHT的框架上利用目标运动状态信息结合辐射源的载频特征信息实现了多目标多辐射源的边跟踪边参数估计。仿真对比实验结果表明,结合辐射源特征信息的方法具有更好的跟踪性能,具有较高的跟踪精确性与稳健性。 展开更多
关键词 电子侦察卫星 辐射源信息 扩展目标跟踪 聚类 多假设跟踪
下载PDF
两种改进的m-最优多假设跟踪(MHT)算法 被引量:6
13
作者 彭冬亮 史英杰 《火力与指挥控制》 CSCD 北大核心 2011年第5期8-12,共5页
针对多假设跟踪(MHT)算法在跟踪多目标时出现的关联矩阵随目标及量测数急剧增长的情况,从降低聚矩阵行、列向量维数角度,提出了两种改进的m-最优MHT关联算法。仿真结果表明,所提出的改进方法不仅大大减少了由高维聚矩阵拆分所引起的庞... 针对多假设跟踪(MHT)算法在跟踪多目标时出现的关联矩阵随目标及量测数急剧增长的情况,从降低聚矩阵行、列向量维数角度,提出了两种改进的m-最优MHT关联算法。仿真结果表明,所提出的改进方法不仅大大减少了由高维聚矩阵拆分所引起的庞大计算量,而且实现了对多个目标的有效量测-航迹关联,具有一定的实用性。 展开更多
关键词 多假设跟踪 数据关联 多目标跟踪
下载PDF
MHT算法在航迹关联中的应用 被引量:4
14
作者 尹文进 张静远 饶喆 《兵工自动化》 2016年第4期40-41,59,共3页
为了将水下航行器探测目标过程中出现的混淆的目标点迹进行有效分离,将基于卡尔曼滤波的多假设跟踪算法应用于多目标的航迹关联。介绍了多假设算法的基本流程和原理:假设的产生、概率计算和假设剪除,并进行数值仿真。仿真结果表明:多目... 为了将水下航行器探测目标过程中出现的混淆的目标点迹进行有效分离,将基于卡尔曼滤波的多假设跟踪算法应用于多目标的航迹关联。介绍了多假设算法的基本流程和原理:假设的产生、概率计算和假设剪除,并进行数值仿真。仿真结果表明:多目标跟踪算法能够有效解决"量测-目标"数据关联问题,并且能在较短时间内确认目标航迹。 展开更多
关键词 多目标 航迹关联 多假设跟踪
下载PDF
MHT在红外搜索跟踪系统中的应用 被引量:1
15
作者 于连庆 张煜婕 陈华础 《红外与激光工程》 EI CSCD 北大核心 2008年第S2期437-440,共4页
针对红外搜索跟踪系统的弱小目标检测和跟踪的需求,讨论了基于交互多模型的多假设跟踪方法在针对红外搜索跟踪系统中的应用。同时根据红外目标及背景的特点,进行仿真并对仿真数据进行跟踪实验,仿真结果表明:此方法在低信噪比背景下能成... 针对红外搜索跟踪系统的弱小目标检测和跟踪的需求,讨论了基于交互多模型的多假设跟踪方法在针对红外搜索跟踪系统中的应用。同时根据红外目标及背景的特点,进行仿真并对仿真数据进行跟踪实验,仿真结果表明:此方法在低信噪比背景下能成功的跟踪多目标。 展开更多
关键词 多假设跟踪 交互多模型 卡尔曼滤波 数据关联 计算机仿真
下载PDF
密集杂波环境下确定性退火DA-HPMHT跟踪算法 被引量:2
16
作者 李晓花 李亚安 +1 位作者 陈晓 戴淼 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第3期432-437,共6页
在对Homothetic概率多假设跟踪(probabilistic multiple hypothesis tracking,PMHT)和确定性退火(deterministic annealing,DA)技术深入研究的基础上,结合扩展卡尔曼算法,提出了DA-HPMHT算法。针对密集杂波环境对多目标跟踪性能的影响,... 在对Homothetic概率多假设跟踪(probabilistic multiple hypothesis tracking,PMHT)和确定性退火(deterministic annealing,DA)技术深入研究的基础上,结合扩展卡尔曼算法,提出了DA-HPMHT算法。针对密集杂波环境对多目标跟踪性能的影响,给出了DA-HPMHT算法在匀速直线交叉运动目标,机动转弯目标和匀速直线邻近目标的仿真实验,并同HPMHT算法进行了仿真比较。仿真结果表明,在初始值与真实值相差较大的情况下,HPMHT算法跟踪性能下降,而DA-HPMHT算法仍能保持较好的跟踪精度,并且满足实时性要求,证明DA-HPMHT算法对密集杂波环境下多机动目标跟踪的有效性。 展开更多
关键词 概率多假设跟踪 确定性退火 多目标跟踪 扩展卡尔曼算法 密集杂波环境
下载PDF
基于MHT模型的毫米波雷达车辆检测方法 被引量:6
17
作者 胡彬 赵春霞 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第4期557-560,共4页
为了在智能车辆系统中检测前方车辆,该文提出了一种基于多假设跟踪(Multiplehypothesis tracking,MHT)模型的车辆检测方法。首先在多假设跟踪模型下,定义毫米波雷达量测集合与目标集合的对应关系,采用广义概率数据关联算法提取量测集合... 为了在智能车辆系统中检测前方车辆,该文提出了一种基于多假设跟踪(Multiplehypothesis tracking,MHT)模型的车辆检测方法。首先在多假设跟踪模型下,定义毫米波雷达量测集合与目标集合的对应关系,采用广义概率数据关联算法提取量测集合中的有效目标,从而得到有效目标集合。利用概率树模型估算目标的出现概率来维护检测的目标集合,保留稳定的检测结果。实验结果表明:该方法对于远近距离下和较差环境下黑夜灯光的前方车辆达到了准确的检测效果,克服了基于视觉的车辆检测方法对目标距离和环境光线敏感的缺点,同时在目标的保持维护上也取得了良好的效果。 展开更多
关键词 车辆检测 毫米波雷达 多假设跟踪模型 广义概率数据关联算法 概率树
下载PDF
基于MHT的多物体跟踪算法 被引量:1
18
作者 邵洁 《上海电力学院学报》 CAS 2010年第1期79-82,共4页
探讨了多假设跟踪算法(MHT)在多物体检测跟踪系统中的应用方式.该方法采用卡尔曼滤波算法实现跟踪轨迹假设,采用LAP算法实现数据关联,将预测和视频采集测量值结合得到最优跟踪轨迹.实验表明,该方法在实践中达到了较好的效果.
关键词 卡尔曼滤波 多假设跟踪 线形分配 多物体跟踪
下载PDF
基于自适应GMM杂波估计的改进MHT算法
19
作者 李旭东 王子微 +1 位作者 张玉玺 陆小科 《太赫兹科学与电子信息学报》 2023年第6期794-800,共7页
在传统多假设跟踪(MHT)算法中通常会假设杂波强度先验已知,当观测场景中杂波未知且空变时,该假设将会导致跟踪算法性能急剧下降。针对这一问题,本文提出一种基于自适应高斯混合模型(GMM)在线估计未知杂波的改进MHT算法。首先利用自适应... 在传统多假设跟踪(MHT)算法中通常会假设杂波强度先验已知,当观测场景中杂波未知且空变时,该假设将会导致跟踪算法性能急剧下降。针对这一问题,本文提出一种基于自适应高斯混合模型(GMM)在线估计未知杂波的改进MHT算法。首先利用自适应GMM拟合未知杂波空间分布,并自适应地估计出波门内的杂波强度;然后将其应用于MHT处理中,有效改善航迹得分计算和最优假设航迹估计的准确性,进而实现在杂波未知场景中的稳定跟踪。仿真结果表明,在未知杂波观测场景中,所提算法相比传统MHT算法和MHT-GMM算法获得了更好的数据关联准确性和航迹维持性能。 展开更多
关键词 多假设跟踪 杂波强度 自适应高斯混合模型 航迹得分 最优假设航迹
下载PDF
强干扰环境下水下纯方位PMHT多目标跟踪 被引量:10
20
作者 李晓花 李亚安 +2 位作者 鲁晓锋 赵晨旭 蔚婧 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第2期359-365,共7页
针对强干扰环境水下纯方位多目标跟踪的非线性、不可观测性以及数据关联模糊等问题,基于期望极大化算法,结合扩展卡尔曼滤波(extended Kalman filter,EKF)平滑算法和无味卡尔曼滤波(unscented Kalman filter,UKF)平滑算法,提出了基于EKF... 针对强干扰环境水下纯方位多目标跟踪的非线性、不可观测性以及数据关联模糊等问题,基于期望极大化算法,结合扩展卡尔曼滤波(extended Kalman filter,EKF)平滑算法和无味卡尔曼滤波(unscented Kalman filter,UKF)平滑算法,提出了基于EKF和UKF的多传感器多目标纯方位概率多假设跟踪(probabilistic multiple hypothesis tracking,PMHT)算法。纯方位PMHT算法通过引入目标和量测数据之间的关联变量来解决量测与目标之间的数据关联模糊问题。简化了基于EKF平滑算法的多传感器纯方位PMHT算法,避免堆积每个传感器的合成量测,有效减小了运算量。仿真结果表明,在水下强干扰环境下,对于静止多观测站和机动单观测站,2种算法对多个交叉运动目标和邻近运动目标的航迹关联成功率高,抗干扰性能好,并且运算量小,证明了算法的有效性。 展开更多
关键词 纯方位 多目标跟踪 概率多假设跟踪 数据关联 扩展卡尔曼滤波 无味卡尔曼滤波
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部