Multiple direction compression(MDC)was conducted on sintered pure tungsten(99.9%,mass fraction)with different reductions at 1423 K.The microstructure,microhardness and thermal stability of the MDC-processed samples we...Multiple direction compression(MDC)was conducted on sintered pure tungsten(99.9%,mass fraction)with different reductions at 1423 K.The microstructure,microhardness and thermal stability of the MDC-processed samples were studied by X-ray diffraction(XRD),electron backscattered diffraction(EBSD)and differential scanning calorimetry(DSC)compared with those of the initial sintered tungsten.The results show that the dislocation density increases significantly with the reduction of MDC,ranging from 3.08×1014 m-2 for the initial sintered tungsten to 8.08×1014 m-2 for the tungsten after MDC with the reduction of 50%.The average grain size decreases from 83.8 to 14.7μm and the microhardness value increases from HV0.2 417 to HV0.2 521.The recrystallization temperature for the tungsten samples processed by MDC is approximately constant at around 1600 K.The MDC of sintered tungsten results in a decrease of grain size concurrent with an increase of uniformly distributed nucleation sites,which leads to the improvement of the thermal stability.展开更多
Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck ...Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.展开更多
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi...An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase tran...The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase transition mechanism of the water under multiple shocks is discussed.The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages:relaxation stage,decline stage,and recovery stage.In the early stage of the phase transition,the new phase particles began to form around the quartz/window interface.It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work.Due to the new phase core being much smaller than the wavelength of the incident light,the transmittance of the sample within the relaxation stage remains steady.The decline stage can be divided into the rapid descent stage and the slow descent stage in this work,which is considered as the different growth rates of the new phase particle under different shock loadings.The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value.However,the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other,which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.展开更多
The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatur...The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatures.The constitutive relation of La metal determined in a certain range of strains was employed and adjusted in numerically simulating large deformations of La metal specimens generated by multi-compression in SHPB tests and recorded by a high-speed camera.The dynamic compressive behavior and constitutive relations of La metal under multiple SHPB tests loading was also revealed.The results of scanning electron microscope(SEM) investigation of the recovered La metal specimens for typical tests showed that there was a variety of deformation microstructures depending on strain rate,temperature and stress state.展开更多
基金Project(51675154)supported by the National Natural Science Foundation of ChinaProject(2014GB121000)supported by the National Magnetic Confinement Fusion Program,China
文摘Multiple direction compression(MDC)was conducted on sintered pure tungsten(99.9%,mass fraction)with different reductions at 1423 K.The microstructure,microhardness and thermal stability of the MDC-processed samples were studied by X-ray diffraction(XRD),electron backscattered diffraction(EBSD)and differential scanning calorimetry(DSC)compared with those of the initial sintered tungsten.The results show that the dislocation density increases significantly with the reduction of MDC,ranging from 3.08×1014 m-2 for the initial sintered tungsten to 8.08×1014 m-2 for the tungsten after MDC with the reduction of 50%.The average grain size decreases from 83.8 to 14.7μm and the microhardness value increases from HV0.2 417 to HV0.2 521.The recrystallization temperature for the tungsten samples processed by MDC is approximately constant at around 1600 K.The MDC of sintered tungsten results in a decrease of grain size concurrent with an increase of uniformly distributed nucleation sites,which leads to the improvement of the thermal stability.
基金supported by China MOST project (No.2012BAH46B04)
文摘Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.
基金supported by the National Natural Science Foundation of China(61271342)
文摘An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
基金the National Natural Science Foundation of China(Grant No.11604271).
文摘The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system.Based on the light scattering theory and phase transformation kinetics,the phase transition mechanism of the water under multiple shocks is discussed.The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages:relaxation stage,decline stage,and recovery stage.In the early stage of the phase transition,the new phase particles began to form around the quartz/window interface.It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work.Due to the new phase core being much smaller than the wavelength of the incident light,the transmittance of the sample within the relaxation stage remains steady.The decline stage can be divided into the rapid descent stage and the slow descent stage in this work,which is considered as the different growth rates of the new phase particle under different shock loadings.The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value.However,the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other,which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.
基金supported by National Natural Science Foundation of China (10872100,11072118)Natural Science Foundation of Zhejiang(Y12A020008)
文摘The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatures.The constitutive relation of La metal determined in a certain range of strains was employed and adjusted in numerically simulating large deformations of La metal specimens generated by multi-compression in SHPB tests and recorded by a high-speed camera.The dynamic compressive behavior and constitutive relations of La metal under multiple SHPB tests loading was also revealed.The results of scanning electron microscope(SEM) investigation of the recovered La metal specimens for typical tests showed that there was a variety of deformation microstructures depending on strain rate,temperature and stress state.