The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is ...The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.展开更多
Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake in...Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake intensities, a comparison between the observed building damage, and the three earthquake performance objectives and seismic conceptual design principles specified by the national "Code for Seismic Design of Buildings GB50011-2001," was carried out. Actual damage and predicted damage for a given earthquake level for different types of structures is compared. Discussions on seismic conceptual design principles, with respect to multiple defense lines, strong column-weak beam, link beam of shear walls, ductility detailing of masonry structures, exits and staircases, and nonstructural elements, etc. are carried out. Suggestions for improving the seismic design of structures are also proposed. It is concluded that the seismic performance objectives for three earthquake levels, i.e., "no failure under minor earthquake level, ""repairable damage under moderate earthquake level" and "no collapse under major earthquake level" can be achieved if seismic design principles are carried out by strictly following the code requirements and ensuring construction quality.展开更多
For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform d...For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.展开更多
Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain siz...Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.展开更多
It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
Near-field head-related transfer functions (HRTFs) are essential to scientific re- searches of binaural hearing and practical applications of virtual auditory display. High ef- ficiency, accuracy and repeatability a...Near-field head-related transfer functions (HRTFs) are essential to scientific re- searches of binaural hearing and practical applications of virtual auditory display. High ef- ficiency, accuracy and repeatability are required in a near-field HRTF measurement. Hence, there is no reference which intents on solving the measuring difficulties of near-field HRTF for human subjects. In present work, an efficient near-field HRTF measurement system based on computer control is designed and implemented, and a fast calibration method for the system is proposed to first solve the measurement of near-field HRTF for human subjects. The efficiency of measurement is enhanced by a comprehensive design on the acoustic, electronic and mechanical parts of the system. And the accuracy and repeatability of the measurement are greatly im- proved by carefully calibrating the positions of sound source, subject and binaural microphones. This system is suitable for near-field HRTF measurement at various source distances within 1.0 m, for both human subject and artificial head. The time costs of HRTF measurement at a single sound source distance and full directions has been reduced to less than 20 minutes. The measurement results indicate that the accuracy of the system satisfies the actual requirements. The system is applicable to scientific research and can be used to establish an individualized near-field HRTF database for human subjects.展开更多
A novel single cathode chamber and multiple anode chamber microbial fuel cell design(MAC-MFC)was developed by incorporating multiple anode chambers into a single unit and its performance was checked.During 60 days o...A novel single cathode chamber and multiple anode chamber microbial fuel cell design(MAC-MFC)was developed by incorporating multiple anode chambers into a single unit and its performance was checked.During 60 days of operation,performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell(SC-MFC).The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently.Further,MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed.MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space,which claims its candidature for future possible scale-up applications.展开更多
Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The...Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra.Such spectral intensity variations are then converted into2 D spectra by a form of correlation analysis for subsequent interpretation.Many different types of 2D correlation approaches have been proposed.In particular,2D hetero-correlation and multiple perturbation correlation analyses,including orthogonal sample design scheme,are discussed in this review.Additional references to other important developments in the field of 2D correlation spectroscopy,such as projection correlation and codistribution analysis,were also provided.展开更多
文摘The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.
文摘Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake intensities, a comparison between the observed building damage, and the three earthquake performance objectives and seismic conceptual design principles specified by the national "Code for Seismic Design of Buildings GB50011-2001," was carried out. Actual damage and predicted damage for a given earthquake level for different types of structures is compared. Discussions on seismic conceptual design principles, with respect to multiple defense lines, strong column-weak beam, link beam of shear walls, ductility detailing of masonry structures, exits and staircases, and nonstructural elements, etc. are carried out. Suggestions for improving the seismic design of structures are also proposed. It is concluded that the seismic performance objectives for three earthquake levels, i.e., "no failure under minor earthquake level, ""repairable damage under moderate earthquake level" and "no collapse under major earthquake level" can be achieved if seismic design principles are carried out by strictly following the code requirements and ensuring construction quality.
基金supported by the National Natural Science Foundation of China(6107114561271331)
文摘For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.
基金supported by grants from the National Natural Science Foundation of China (No.91635302)the National Key Research and Development Program of China (2016YFD0100401)+1 种基金the Chinese Academy of Sciences (XDA08010101)the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCEKF-2017-04)
文摘Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.
基金supported by the National Natural Science Foundation of China(11104082,11574090)Fundamental Research Funds for the Central Universities of South China University of Technology(2015ZZ135)
文摘Near-field head-related transfer functions (HRTFs) are essential to scientific re- searches of binaural hearing and practical applications of virtual auditory display. High ef- ficiency, accuracy and repeatability are required in a near-field HRTF measurement. Hence, there is no reference which intents on solving the measuring difficulties of near-field HRTF for human subjects. In present work, an efficient near-field HRTF measurement system based on computer control is designed and implemented, and a fast calibration method for the system is proposed to first solve the measurement of near-field HRTF for human subjects. The efficiency of measurement is enhanced by a comprehensive design on the acoustic, electronic and mechanical parts of the system. And the accuracy and repeatability of the measurement are greatly im- proved by carefully calibrating the positions of sound source, subject and binaural microphones. This system is suitable for near-field HRTF measurement at various source distances within 1.0 m, for both human subject and artificial head. The time costs of HRTF measurement at a single sound source distance and full directions has been reduced to less than 20 minutes. The measurement results indicate that the accuracy of the system satisfies the actual requirements. The system is applicable to scientific research and can be used to establish an individualized near-field HRTF database for human subjects.
文摘A novel single cathode chamber and multiple anode chamber microbial fuel cell design(MAC-MFC)was developed by incorporating multiple anode chambers into a single unit and its performance was checked.During 60 days of operation,performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell(SC-MFC).The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently.Further,MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed.MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space,which claims its candidature for future possible scale-up applications.
文摘Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra.Such spectral intensity variations are then converted into2 D spectra by a form of correlation analysis for subsequent interpretation.Many different types of 2D correlation approaches have been proposed.In particular,2D hetero-correlation and multiple perturbation correlation analyses,including orthogonal sample design scheme,are discussed in this review.Additional references to other important developments in the field of 2D correlation spectroscopy,such as projection correlation and codistribution analysis,were also provided.