Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical...Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.展开更多
It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this wor...It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method.展开更多
The quality of expert ranking directly affects the expert retrieval precision.According to the characteristics of the expert entity,an expert ranking model based on the list with multiple features was proposed.Firstly...The quality of expert ranking directly affects the expert retrieval precision.According to the characteristics of the expert entity,an expert ranking model based on the list with multiple features was proposed.Firstly,multiple features was selected through the analysis of expert pages;secondly,in order to learn parameters through gradient descent and construct expert ranking model,all features were integrated into ListNet ranking model;finally,expert ranking contrast experiment will be performed using the trained model.The experimental results show that the proposed method has a good effect,and the value of NDCG@1 increased14.2%comparing with the pairwise method with expert ranking.展开更多
This paper presents a tool wear monitoring method in drilling process using cutting force signal. The kurtosis coefficient and the energy of a special frequency band of cutting force signals were taken as the signal f...This paper presents a tool wear monitoring method in drilling process using cutting force signal. The kurtosis coefficient and the energy of a special frequency band of cutting force signals were taken as the signal features of tool wear as well as the mean value and the standard deviation from the time and frequency domain. The relationships between the signal feature and tool wear were discussed; then the vectors constituted of the signal features were input to the artificial neural network for fusion in order to realize intelligent identification of tool wear. The experimental results show that the artificial neural network can realize fusion of multiple features effectively, but the identification precision and the extending ability are not ideal owing to the relationship between the features and the tool wear being fuzzy and not certain.展开更多
The performance of decoding algorithm is one of the important influential factors to determine the communication quality of optical camera communication(OCC) system. In this paper, we first propose a decoding algorith...The performance of decoding algorithm is one of the important influential factors to determine the communication quality of optical camera communication(OCC) system. In this paper, we first propose a decoding algorithm with adaptive thresholding based on the captured pixel values under an ideal environment, and then we further propose a decoding algorithm with multiple features, which is more suitable under the existence of the interference of light sources. The algorithm firstly determines the light-emitting diode(LED) array profile information by removing the interfering light sources through geometric features, and then identifies the LED state by calculating two grayscale features, the average gray ratio(AGR) and the gradient radial inwardness(GRI) of the LEDs, and finally obtains the LED state matrix. The experimental results show that the bit error ratio(BER) of the decoding algorithm with multiple features decreases from 1×10^(-2) to 5×10^(-4) at 80 m.展开更多
In this paper we propose a multiple feature approach for the normalization task which can map each disorder mention in the text to a unique unified medical language system(UMLS)concept unique identifier(CUI). We d...In this paper we propose a multiple feature approach for the normalization task which can map each disorder mention in the text to a unique unified medical language system(UMLS)concept unique identifier(CUI). We develop a two-step method to acquire a list of candidate CUIs and their associated preferred names using UMLS API and to choose the closest CUI by calculating the similarity between the input disorder mention and each candidate. The similarity calculation step is formulated as a classification problem and multiple features(string features,ranking features,similarity features,and contextual features) are used to normalize the disorder mentions. The results show that the multiple feature approach improves the accuracy of the normalization task from 32.99% to 67.08% compared with the Meta Map baseline.展开更多
Objective To analyze the clinical features of the multiple trauma patients combined with spine and spinal cord injuries.Methods A retrospective study was performed in143multiple trauma patients combined with spine and...Objective To analyze the clinical features of the multiple trauma patients combined with spine and spinal cord injuries.Methods A retrospective study was performed in143multiple trauma patients combined with spine and spinal展开更多
Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the ...Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the interest in research in this field is evolving,such as understanding of actions and scenes,studying human joints,and human posture recognition.Many HAR techniques are introduced in the literature.Nonetheless,the challenge of redundant and irrelevant features reduces recognition accuracy.They also faced a few other challenges,such as differing perspectives,environmental conditions,and temporal variations,among others.In this work,a deep learning and improved whale optimization algorithm based framework is proposed for HAR.The proposed framework consists of a few core stages i.e.,frames initial preprocessing,fine-tuned pre-trained deep learning models through transfer learning(TL),features fusion using modified serial based approach,and improved whale optimization based best features selection for final classification.Two pre-trained deep learning models such as InceptionV3 and Resnet101 are fine-tuned and TL is employed to train on action recognition datasets.The fusion process increases the length of feature vectors;therefore,improved whale optimization algorithm is proposed and selects the best features.The best selected features are finally classified usingmachine learning(ML)classifiers.Four publicly accessible datasets such as Ut-interaction,Hollywood,Free Viewpoint Action Recognition usingMotion History Volumes(IXMAS),and centre of computer vision(UCF)Sports,are employed and achieved the testing accuracy of 100%,99.9%,99.1%,and 100%respectively.Comparison with state of the art techniques(SOTA),the proposed method showed the improved accuracy.展开更多
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min...Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA.展开更多
Recognition and counting of greenhouse pests are important for monitoring and forecasting pest population dynamics.This study used image processing techniques to recognize and count whiteflies and thrips on a sticky t...Recognition and counting of greenhouse pests are important for monitoring and forecasting pest population dynamics.This study used image processing techniques to recognize and count whiteflies and thrips on a sticky trap located in a greenhouse environment.The digital images of sticky traps were collected using an image-acquisition system under different greenhouse conditions.If a single color space is used,it is difficult to segment the small pests correctly because of the detrimental effects of non-uniform illumination in complex scenarios.Therefore,a method that first segments object pests in two color spaces using the Prewitt operator in I component of the hue-saturation-intensity(HSI)color space and the Canny operator in the B component of the Lab color space was proposed.Then,the segmented results for the two-color spaces were summed and achieved 91.57%segmentation accuracy.Next,because different features of pests contribute differently to the classification of pest species,the study extracted multiple features(e.g.,color and shape features)in different color spaces for each segmented pest region to improve the recognition performance.Twenty decision trees were used to form a strong ensemble learning classifier that used a majority voting mechanism and obtains 95.73%recognition accuracy.The proposed method is a feasible and effective way to process greenhouse pest images.The system accurately recognized and counted pests in sticky trap images captured under real greenhouse conditions.展开更多
Background:Chromosomal abnormality is a common cause of congenital anomalies,psychiatric disorders,and mental retardation.However,the double trisomy 48,XXX,+18 is a rare chromosome abnormality.Methods:Case report and ...Background:Chromosomal abnormality is a common cause of congenital anomalies,psychiatric disorders,and mental retardation.However,the double trisomy 48,XXX,+18 is a rare chromosome abnormality.Methods:Case report and literature review.Results:A 7-hour-old girl presented to our unit because of poor response after birth.She presented with multiple dysmorphic features,including small for gestational age infant,flat nasal bridge,widely-spaced eyes,the left thumb deformities,flat facial profile,raised sternum,ventricular septal defect,the third lateral brain ventricle enlargement,and small liver.This case expands the spectrum of malformations reported in association with the double trisomy 48,XXX,+18.The literature on 16 fetuses or infants with the 48,XXX,+18 were also reviewed.Conclusion:These data suggested that in patients with clinical features similar to trisomy 18,especially with anomalies of the ears and/or reproductive malformations,double trisomy(48,XXX,+18)should be considered and karyotyping should be performed although it is a rare disease.展开更多
The quality of photos is highly susceptible to severe weather such as heavy rain;it can also degrade the performance of various visual tasks like object detection.Rain removal is a challenging problem because rain str...The quality of photos is highly susceptible to severe weather such as heavy rain;it can also degrade the performance of various visual tasks like object detection.Rain removal is a challenging problem because rain streaks have different appearances even in one image.Regions where rain accumulates appear foggy or misty,while rain streaks can be clearly seen in areas where rain is less heavy.We propose removing various rain effects in pictures using a hybrid multiscale loss guided multiple feature fusion de-raining network(MSGMFFNet).Specially,to deal with rain streaks,our method generates a rain streak attention map,while preprocessing uses gamma correction and contrast enhancement to enhanced images to address the problem of rain accumulation.Using these tools,the model can restore a result with abundant details.Furthermore,a hybrid multiscale loss combining L1 loss and edge loss is used to guide the training process to pay attention to edge and content information.Comprehensive experiments conducted on both synthetic and real-world datasets demonstrate the effectiveness of our method.展开更多
Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices,spec...Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices,specified postures, simple background, and stable illumination. In this paper, a contactless personal identification system is proposed based on matching hand geometry features and color features. An inexpensive Kinect sensor is used to acquire depth and color images of the hand. During image acquisition, no pegs or surfaces are used to constrain hand position or posture. We segment the hand from the background through depth images through a process which is insensitive to illumination and background. Then finger orientations and landmark points, like finger tips or finger valleys, are obtained by geodesic hand contour analysis. Geometric features are extracted from depth images and palmprint features from intensity images. In previous systems, hand features like finger length and width are normalized, which results in the loss of the original geometric features. In our system, we transform 2D image points into real world coordinates, so that the geometric features remain invariant to distance and perspective effects. Extensive experiments demonstrate that the proposed hand-biometric-based personal identification system is effective and robust in various practical situations.展开更多
基金National Key Research and Development Program of China(2022YFC3502302)National Natural Science Foundation of China(82074580)Graduate Research Innovation Program of Jiangsu Province(KYCX23_2078).
文摘Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.
基金Projects(61573380,61303185) supported by the National Natural Science Foundation of ChinaProjects(2016M592450,2017M612585) supported by the China Postdoctoral Science FoundationProjects(2016JJ4119,2017JJ3416) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method.
基金Supported by the National Natural Science Foundation of China(61175068)
文摘The quality of expert ranking directly affects the expert retrieval precision.According to the characteristics of the expert entity,an expert ranking model based on the list with multiple features was proposed.Firstly,multiple features was selected through the analysis of expert pages;secondly,in order to learn parameters through gradient descent and construct expert ranking model,all features were integrated into ListNet ranking model;finally,expert ranking contrast experiment will be performed using the trained model.The experimental results show that the proposed method has a good effect,and the value of NDCG@1 increased14.2%comparing with the pairwise method with expert ranking.
文摘This paper presents a tool wear monitoring method in drilling process using cutting force signal. The kurtosis coefficient and the energy of a special frequency band of cutting force signals were taken as the signal features of tool wear as well as the mean value and the standard deviation from the time and frequency domain. The relationships between the signal feature and tool wear were discussed; then the vectors constituted of the signal features were input to the artificial neural network for fusion in order to realize intelligent identification of tool wear. The experimental results show that the artificial neural network can realize fusion of multiple features effectively, but the identification precision and the extending ability are not ideal owing to the relationship between the features and the tool wear being fuzzy and not certain.
基金supported by the Department of Science and Technology of Jilin Province (No.20200401122GX)。
文摘The performance of decoding algorithm is one of the important influential factors to determine the communication quality of optical camera communication(OCC) system. In this paper, we first propose a decoding algorithm with adaptive thresholding based on the captured pixel values under an ideal environment, and then we further propose a decoding algorithm with multiple features, which is more suitable under the existence of the interference of light sources. The algorithm firstly determines the light-emitting diode(LED) array profile information by removing the interfering light sources through geometric features, and then identifies the LED state by calculating two grayscale features, the average gray ratio(AGR) and the gradient radial inwardness(GRI) of the LEDs, and finally obtains the LED state matrix. The experimental results show that the bit error ratio(BER) of the decoding algorithm with multiple features decreases from 1×10^(-2) to 5×10^(-4) at 80 m.
基金Supported by the National Natural Science Foundation of China(61133012,61202193,61373108)the Major Projects of the National Social Science Foundation of China(11&ZD189)+1 种基金the Chinese Postdoctoral Science Foundation(2013M540593,2014T70722)the Open Foundation of Shandong Key Laboratory of Language Resource Development and Application
文摘In this paper we propose a multiple feature approach for the normalization task which can map each disorder mention in the text to a unique unified medical language system(UMLS)concept unique identifier(CUI). We develop a two-step method to acquire a list of candidate CUIs and their associated preferred names using UMLS API and to choose the closest CUI by calculating the similarity between the input disorder mention and each candidate. The similarity calculation step is formulated as a classification problem and multiple features(string features,ranking features,similarity features,and contextual features) are used to normalize the disorder mentions. The results show that the multiple feature approach improves the accuracy of the normalization task from 32.99% to 67.08% compared with the Meta Map baseline.
文摘Objective To analyze the clinical features of the multiple trauma patients combined with spine and spinal cord injuries.Methods A retrospective study was performed in143multiple trauma patients combined with spine and spinal
基金This research work is supported in part by Chiang Mai University and HITEC University.
文摘Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the interest in research in this field is evolving,such as understanding of actions and scenes,studying human joints,and human posture recognition.Many HAR techniques are introduced in the literature.Nonetheless,the challenge of redundant and irrelevant features reduces recognition accuracy.They also faced a few other challenges,such as differing perspectives,environmental conditions,and temporal variations,among others.In this work,a deep learning and improved whale optimization algorithm based framework is proposed for HAR.The proposed framework consists of a few core stages i.e.,frames initial preprocessing,fine-tuned pre-trained deep learning models through transfer learning(TL),features fusion using modified serial based approach,and improved whale optimization based best features selection for final classification.Two pre-trained deep learning models such as InceptionV3 and Resnet101 are fine-tuned and TL is employed to train on action recognition datasets.The fusion process increases the length of feature vectors;therefore,improved whale optimization algorithm is proposed and selects the best features.The best selected features are finally classified usingmachine learning(ML)classifiers.Four publicly accessible datasets such as Ut-interaction,Hollywood,Free Viewpoint Action Recognition usingMotion History Volumes(IXMAS),and centre of computer vision(UCF)Sports,are employed and achieved the testing accuracy of 100%,99.9%,99.1%,and 100%respectively.Comparison with state of the art techniques(SOTA),the proposed method showed the improved accuracy.
基金Project(51874353)supported by the National Natural Science Foundation of ChinaProject(GCX20190898Y)supported by Mittal Student Innovation Project,China。
文摘Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.61601034)and the National Natural Science Foundation of China(Grant No.31871525)The authors acknowledge Kimberly Moravec,PhD,from Liwen Bianji,Edanz Editing China(www.liwenbianji.cn/ac),for editing the English text of a draft of this manuscript.
文摘Recognition and counting of greenhouse pests are important for monitoring and forecasting pest population dynamics.This study used image processing techniques to recognize and count whiteflies and thrips on a sticky trap located in a greenhouse environment.The digital images of sticky traps were collected using an image-acquisition system under different greenhouse conditions.If a single color space is used,it is difficult to segment the small pests correctly because of the detrimental effects of non-uniform illumination in complex scenarios.Therefore,a method that first segments object pests in two color spaces using the Prewitt operator in I component of the hue-saturation-intensity(HSI)color space and the Canny operator in the B component of the Lab color space was proposed.Then,the segmented results for the two-color spaces were summed and achieved 91.57%segmentation accuracy.Next,because different features of pests contribute differently to the classification of pest species,the study extracted multiple features(e.g.,color and shape features)in different color spaces for each segmented pest region to improve the recognition performance.Twenty decision trees were used to form a strong ensemble learning classifier that used a majority voting mechanism and obtains 95.73%recognition accuracy.The proposed method is a feasible and effective way to process greenhouse pest images.The system accurately recognized and counted pests in sticky trap images captured under real greenhouse conditions.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR13H090002)the National Natural Science Foundation of China(81170787 and 81371215)
文摘Background:Chromosomal abnormality is a common cause of congenital anomalies,psychiatric disorders,and mental retardation.However,the double trisomy 48,XXX,+18 is a rare chromosome abnormality.Methods:Case report and literature review.Results:A 7-hour-old girl presented to our unit because of poor response after birth.She presented with multiple dysmorphic features,including small for gestational age infant,flat nasal bridge,widely-spaced eyes,the left thumb deformities,flat facial profile,raised sternum,ventricular septal defect,the third lateral brain ventricle enlargement,and small liver.This case expands the spectrum of malformations reported in association with the double trisomy 48,XXX,+18.The literature on 16 fetuses or infants with the 48,XXX,+18 were also reviewed.Conclusion:These data suggested that in patients with clinical features similar to trisomy 18,especially with anomalies of the ears and/or reproductive malformations,double trisomy(48,XXX,+18)should be considered and karyotyping should be performed although it is a rare disease.
基金This work was supported in part by the National Key R&D Program of China under No.2017YFB1003000the National Natural Science Foundation of China under No.61872047 and No.61720106007+2 种基金the Beijing Nova Program under No.Z201100006820124the Beijing Natural Science Foundation(L191004)the 111 Project(B18008).
文摘The quality of photos is highly susceptible to severe weather such as heavy rain;it can also degrade the performance of various visual tasks like object detection.Rain removal is a challenging problem because rain streaks have different appearances even in one image.Regions where rain accumulates appear foggy or misty,while rain streaks can be clearly seen in areas where rain is less heavy.We propose removing various rain effects in pictures using a hybrid multiscale loss guided multiple feature fusion de-raining network(MSGMFFNet).Specially,to deal with rain streaks,our method generates a rain streak attention map,while preprocessing uses gamma correction and contrast enhancement to enhanced images to address the problem of rain accumulation.Using these tools,the model can restore a result with abundant details.Furthermore,a hybrid multiscale loss combining L1 loss and edge loss is used to guide the training process to pay attention to edge and content information.Comprehensive experiments conducted on both synthetic and real-world datasets demonstrate the effectiveness of our method.
基金Project supported by the National Natural Science Foundation of China(Nos.61340046,60875050,and 60675025)the National High-Tech R&D Program(863)of China(No.2006AA04Z247)+1 种基金the Scientific and Technical Innovation Commission of Shenzhen Municipality(Nos.JCYJ20120614152234873,CXC201104210010A,JCYJ20130331144631730,and JCYJ20130331144716089)the Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20130001110011)
文摘Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices,specified postures, simple background, and stable illumination. In this paper, a contactless personal identification system is proposed based on matching hand geometry features and color features. An inexpensive Kinect sensor is used to acquire depth and color images of the hand. During image acquisition, no pegs or surfaces are used to constrain hand position or posture. We segment the hand from the background through depth images through a process which is insensitive to illumination and background. Then finger orientations and landmark points, like finger tips or finger valleys, are obtained by geodesic hand contour analysis. Geometric features are extracted from depth images and palmprint features from intensity images. In previous systems, hand features like finger length and width are normalized, which results in the loss of the original geometric features. In our system, we transform 2D image points into real world coordinates, so that the geometric features remain invariant to distance and perspective effects. Extensive experiments demonstrate that the proposed hand-biometric-based personal identification system is effective and robust in various practical situations.