The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official...The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official operation,and optimization and enhancement.This paper explores the problems,policy,and political sources of policy changes since the establishment of the Horgos International Border Cooperation Center by applying the multi-source flow theory to find the opening of the problematic and political windows.It also constructs a model of policy change dynamics to provide suggestions on how the government should better promote the good development of China’s first transnational cooperation center.展开更多
The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic diff...The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.展开更多
The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obt...The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obtain the wall pressure of the control volume. The 2-D inviscid incompressible steady duct flow is considered. The conservation equations in integral form are discretized for a control volume. The circulation along the control surface is expressed as a nonlinear function of the vertical velocity component at the inlet and is set equal to zero for the inviscid flow. The equation is solved by the Newton method, and the other aerodynamic properties can be obtained. The calculated results have been compared to the experiment and the agreement has been found fairly satisfactory.展开更多
The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanis...The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation.展开更多
Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of tw...Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of two annular fluid flowchannels,four radial fluid flow channels and three centric pipe fluid flowchannels. The working principle of the multiple radial MR valve was introduced in detail,and the structure optimization design was carried out using ANSYS software to obtain the optimal structure parameters. Moreover,the optimized MR valve was compared with preoptimized MR valve in terms of their magnetic flux density of radial fluid resistance gap and performance of pressure drop. The experimental test rig was set up to investigate the performance of pressure drop of the proposed MR valve under different currents applied and different loading cases. The results showthat the pressure drop between the inlet and outlet port could reach 5. 77 MPa at the applied current of 0. 8 A. Furthermore,the experimental results also indicate that the loading cases had no effect on the performance of pressure drop.展开更多
Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical sol...Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.展开更多
Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and ...Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and multi-parameter setting in cracking process,it is difficult to find the overall energy efficiency scheduling for the purpose of saving energy.The traditional scheduling solutions with optimal economic benefit are not applicable for energy efficiency scheduling issue due to the neglecting of recycle and lost energy,as well as critical operation parameters as coil outlet pressure(COP)and dilution ratio.In addition,the scheduling solutions mostly regard each cracking furnace as an elementary unit,regardless of the coordinated operation of internal dual radiation chambers(DRC).Therefore,to improve energy utilization and production operation,a novel energy efficiency scheduling solution for ethylene cracking process is proposed in this paper.Specifically,steam heat recycle and exhaust heat loss are considered in cracking process based on 6 types of extreme learning machine(ELM)based cracking models incorporating DRC operation and three operation parameters as coil outlet temperature(COT),COP,and dilution ratio according to semi-mechanism analysis.Then to provide long-term decision-making basis for energy efficiency scheduling,overall energy efficiency indexes,including overall output per unit net energy input(OONE),output-input ratio per unit net energy input(ORNE),exhaust gas heat loss ratio(EGHL),are designed based on input-output analysis in terms of material and energy flows.Finally,a multiobjective evolutionary algorithm based on decomposition(MOEA/D)is employed to solve the formulated multi-objective mixed-integer nonlinear programming(MOMINLP)model.The validities of the proposed scheduling solution are illustrated through a case study.The scheduling results demonstrate that an optimal balance between multi-flow allocation,multi-parameter setting,and DRC coordinated operation is reached,which achieves 3.37%and 2.63%decreases in net energy input for same product output and conversion ratio,as well as the 1.56%decrease in energy loss ratio.展开更多
Numerical solutions of the steady transonic small-disturbance(TSD) potential equation are computed using the conservative Murman-Cole scheme. Multiple solutions are discovered and mapped out for the Mach number rang...Numerical solutions of the steady transonic small-disturbance(TSD) potential equation are computed using the conservative Murman-Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.展开更多
The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, how...The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, however, frequently overlook the combined impacts of wind and snow environments. Furthermore, in urban meteorological studies, it is impossible to accurately assess the wind and snow environment in specific areas or locations. In this study, a refined Computational Fluid Dynamics(CFD) multiphase flow numerical method was used to simulate a planning space's wind and snow environment. The study classified the Snowstorm Weather Grade(SWG) by incorporating the Snowstorm Weather Index(SWI) to generate calculation results of the wind environment and snow environment. In particular, 150 measurement points in the planning space were chosen for analysis and evaluation of their wind and snow environments. The results demonstrated that the SWI index can effectively correlate to the wind and snow environment calculation results. In addition, the graph of SWI showed that 55% of the measurement points had a moderate wind and snow grade SWI, which exceeds the average grade for the entire region. The practical application shows that the wind and snow environment assessment indexes and technical methods developed in this paper can be successfully applied to wind and snow environment studies in other cold cities.展开更多
We investigated a series of novel motors and pumps with a new structure called double-stator. Double-stator can be used as pump or motor just for the working condition on demand. A certain amount of pumps or motors ar...We investigated a series of novel motors and pumps with a new structure called double-stator. Double-stator can be used as pump or motor just for the working condition on demand. A certain amount of pumps or motors are formed in one shell and these subpumps or submotors can work alone or in company without influence on other pumps or moters. This kind of double-stator pumps (motors) are called multi-pumps (multi-motors). Through the analysis of multifarious connection modes of single-acting double-stator multi-pumps and multi-motors, the mathematical expressions of output flow rate, rotational speed and torque are acquired. The results indicate that different flow rates can be provided by one fixed displacement double-stator multi-pump system under the condition of an unalterable driven speed. Likewise, under the terms of a fixed input flow and without complex variable mechanisms, the functions of double speeds, multiple speeds and even differential connection can be realized by a double-stator multi-motor system with various output rotational speeds and torques.展开更多
The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was res...The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was researched and the energy transfer was added to the energy equations.The flow field and the vaporization were calculated coupled.The initial ignition process of the underwater solid rocket motor is obtained and the vaporization influence to the underwater launching is analyzed.The "neck","inverted jet" and "eruption" phenomenon of the bubble are observed.The bubble increases more rapidly because the steam mass added to the fuel.The temperature is lower considering the vaporization because the steam enthalpy is lower than the fuel enthalpy and the flow field of the initial ignition of the underwater-launching solid rocket motor is accordant well to the reference.展开更多
Stress-dependent permeability models are developed for the organic pores and inorganic cleats/fractures in unconventional gas reservoirs,which are modeled as Biot’s porous media of dual-porosity.Further considering m...Stress-dependent permeability models are developed for the organic pores and inorganic cleats/fractures in unconventional gas reservoirs,which are modeled as Biot’s porous media of dual-porosity.Further considering multiple flow mechanisms such as dynamic effects of gas flow and surface diffusion,apparent permeability models are obtained to investigate the characteristics of unconventional gas migration.Compared to the gas transfer in single-porosity reservoirs,the gas migration ability of cleats in dual-porosity stratums rarely changes while that of organic pores is greatly improved because cleats sustain major geomechanical shrinkage deformation when the pore pressure drops.Further,the mass flux of reservoirs is dominated by the mass flux of cleats,which has a lower peak value,but a much longer production term than those in single-porosity reservoirs due to the interaction between organic pores and cleats.Parametric analysis is conducted to identify key factors significantly impacting mass flux in unconventional reservoirs.Reasons for the mass flux variation are also explored in terms of gas migration ability and pore pressure distribution.展开更多
The predictions of the multiple-regime flows from continuum regime to free molecular regime are crucial for the aerodynamic design in a large number of engineering applications,such as the near-space craft,the ultra-l...The predictions of the multiple-regime flows from continuum regime to free molecular regime are crucial for the aerodynamic design in a large number of engineering applications,such as the near-space craft,the ultra-low orbit spacecraft and the micro-electro-mechanical systems(MEMS).Since the essence of this multiple-regime problem is a complex system composed by different scales and mechanics,the modeling and numerical prediction of these multiple-regime flows are very challenging at both theoretical and practical levels.Moreover,the single flow field with multiple flow regimes will make the problem extremly complicated.Unfortunately,this typical flow field is very common in hypersonic application and important for the development of multiple-regime aerodynamics.On the other hand,both the constructions of the low density wind tunnel with high enthalpy and the high altitude flight experiment are also very challenging at the present stage.Therefore,the researches on the multiple-regime flows and the corresponding complex science hit a worldwide bottleneck.This paper reviews the breakthroughs in the computational methods for multiple-regime flows in the last ten years,which can be used as numerical experimental tools for studying the multiple-scale flow mechanism and providing data for aerodynamic designs and thermal protections.This paper focuses on the progress of the unified wave-particle methods established in recent years,which are proved to be both accurate and efficient for multiple-regime flows with extremly high speed.展开更多
文摘The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official operation,and optimization and enhancement.This paper explores the problems,policy,and political sources of policy changes since the establishment of the Horgos International Border Cooperation Center by applying the multi-source flow theory to find the opening of the problematic and political windows.It also constructs a model of policy change dynamics to provide suggestions on how the government should better promote the good development of China’s first transnational cooperation center.
基金supported by the National Natural Science Foundation of China
文摘The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.
文摘The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obtain the wall pressure of the control volume. The 2-D inviscid incompressible steady duct flow is considered. The conservation equations in integral form are discretized for a control volume. The circulation along the control surface is expressed as a nonlinear function of the vertical velocity component at the inlet and is set equal to zero for the inviscid flow. The equation is solved by the Newton method, and the other aerodynamic properties can be obtained. The calculated results have been compared to the experiment and the agreement has been found fairly satisfactory.
基金the National Natural Science Foundation of China,China(Grant No.52227804,52174010)Strategic Cooperation Technology Projects of CNPC and CUPB,China(Grant No.ZLZX2020-01)+1 种基金Sinopec key laboratory of drilling completion and fracturing of shale oil and gas,China(Grant No.35800000-22-ZC0699-0004)the Key Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region,China(Grant No.XJEDU20211028)。
文摘The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation.
基金Supported by the National Natural Science Foundation of China(51475165,11462004)the Jiangxi Provincial Foundation for Leaders of Academic and Disciplines in Science(20162BCB22019)5511 Science and Technology Innovation Talent Project of Jiangxi Province(20165BCB18011)
文摘Due to the controllable and reversible properties of the smart magnetorheological (MR) fluid,a novel multiple radial MR valve was developed. The fluid flowchannels of the proposed MR valve were mainly composed of two annular fluid flowchannels,four radial fluid flow channels and three centric pipe fluid flowchannels. The working principle of the multiple radial MR valve was introduced in detail,and the structure optimization design was carried out using ANSYS software to obtain the optimal structure parameters. Moreover,the optimized MR valve was compared with preoptimized MR valve in terms of their magnetic flux density of radial fluid resistance gap and performance of pressure drop. The experimental test rig was set up to investigate the performance of pressure drop of the proposed MR valve under different currents applied and different loading cases. The results showthat the pressure drop between the inlet and outlet port could reach 5. 77 MPa at the applied current of 0. 8 A. Furthermore,the experimental results also indicate that the loading cases had no effect on the performance of pressure drop.
基金Project(2011ZX05015)supported by Important National Science and Technology Specific Projects of the "Twelfth Five-years" Plan Period,China
文摘Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.
基金supported by the High-tech Research and Development Program of China(2014AA041802)。
文摘Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and multi-parameter setting in cracking process,it is difficult to find the overall energy efficiency scheduling for the purpose of saving energy.The traditional scheduling solutions with optimal economic benefit are not applicable for energy efficiency scheduling issue due to the neglecting of recycle and lost energy,as well as critical operation parameters as coil outlet pressure(COP)and dilution ratio.In addition,the scheduling solutions mostly regard each cracking furnace as an elementary unit,regardless of the coordinated operation of internal dual radiation chambers(DRC).Therefore,to improve energy utilization and production operation,a novel energy efficiency scheduling solution for ethylene cracking process is proposed in this paper.Specifically,steam heat recycle and exhaust heat loss are considered in cracking process based on 6 types of extreme learning machine(ELM)based cracking models incorporating DRC operation and three operation parameters as coil outlet temperature(COT),COP,and dilution ratio according to semi-mechanism analysis.Then to provide long-term decision-making basis for energy efficiency scheduling,overall energy efficiency indexes,including overall output per unit net energy input(OONE),output-input ratio per unit net energy input(ORNE),exhaust gas heat loss ratio(EGHL),are designed based on input-output analysis in terms of material and energy flows.Finally,a multiobjective evolutionary algorithm based on decomposition(MOEA/D)is employed to solve the formulated multi-objective mixed-integer nonlinear programming(MOMINLP)model.The validities of the proposed scheduling solution are illustrated through a case study.The scheduling results demonstrate that an optimal balance between multi-flow allocation,multi-parameter setting,and DRC coordinated operation is reached,which achieves 3.37%and 2.63%decreases in net energy input for same product output and conversion ratio,as well as the 1.56%decrease in energy loss ratio.
文摘Numerical solutions of the steady transonic small-disturbance(TSD) potential equation are computed using the conservative Murman-Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51708151)。
文摘The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, however, frequently overlook the combined impacts of wind and snow environments. Furthermore, in urban meteorological studies, it is impossible to accurately assess the wind and snow environment in specific areas or locations. In this study, a refined Computational Fluid Dynamics(CFD) multiphase flow numerical method was used to simulate a planning space's wind and snow environment. The study classified the Snowstorm Weather Grade(SWG) by incorporating the Snowstorm Weather Index(SWI) to generate calculation results of the wind environment and snow environment. In particular, 150 measurement points in the planning space were chosen for analysis and evaluation of their wind and snow environments. The results demonstrated that the SWI index can effectively correlate to the wind and snow environment calculation results. In addition, the graph of SWI showed that 55% of the measurement points had a moderate wind and snow grade SWI, which exceeds the average grade for the entire region. The practical application shows that the wind and snow environment assessment indexes and technical methods developed in this paper can be successfully applied to wind and snow environment studies in other cold cities.
基金Funded by the National Natural Science Foundation of China (No. 50975246)
文摘We investigated a series of novel motors and pumps with a new structure called double-stator. Double-stator can be used as pump or motor just for the working condition on demand. A certain amount of pumps or motors are formed in one shell and these subpumps or submotors can work alone or in company without influence on other pumps or moters. This kind of double-stator pumps (motors) are called multi-pumps (multi-motors). Through the analysis of multifarious connection modes of single-acting double-stator multi-pumps and multi-motors, the mathematical expressions of output flow rate, rotational speed and torque are acquired. The results indicate that different flow rates can be provided by one fixed displacement double-stator multi-pump system under the condition of an unalterable driven speed. Likewise, under the terms of a fixed input flow and without complex variable mechanisms, the functions of double speeds, multiple speeds and even differential connection can be realized by a double-stator multi-motor system with various output rotational speeds and torques.
文摘The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was researched and the energy transfer was added to the energy equations.The flow field and the vaporization were calculated coupled.The initial ignition process of the underwater solid rocket motor is obtained and the vaporization influence to the underwater launching is analyzed.The "neck","inverted jet" and "eruption" phenomenon of the bubble are observed.The bubble increases more rapidly because the steam mass added to the fuel.The temperature is lower considering the vaporization because the steam enthalpy is lower than the fuel enthalpy and the flow field of the initial ignition of the underwater-launching solid rocket motor is accordant well to the reference.
基金the National Natural Science Foundation of China(Grant Nos.12102372 and 11872324)the Open Research Fund of CNMGE Platform&NSCC-TJ(Grant No.CNMGE2023011).
文摘Stress-dependent permeability models are developed for the organic pores and inorganic cleats/fractures in unconventional gas reservoirs,which are modeled as Biot’s porous media of dual-porosity.Further considering multiple flow mechanisms such as dynamic effects of gas flow and surface diffusion,apparent permeability models are obtained to investigate the characteristics of unconventional gas migration.Compared to the gas transfer in single-porosity reservoirs,the gas migration ability of cleats in dual-porosity stratums rarely changes while that of organic pores is greatly improved because cleats sustain major geomechanical shrinkage deformation when the pore pressure drops.Further,the mass flux of reservoirs is dominated by the mass flux of cleats,which has a lower peak value,but a much longer production term than those in single-porosity reservoirs due to the interaction between organic pores and cleats.Parametric analysis is conducted to identify key factors significantly impacting mass flux in unconventional reservoirs.Reasons for the mass flux variation are also explored in terms of gas migration ability and pore pressure distribution.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12172301,11902266,12072283,and 11902264)the 111 Project of China(Grant No.B17037).
文摘The predictions of the multiple-regime flows from continuum regime to free molecular regime are crucial for the aerodynamic design in a large number of engineering applications,such as the near-space craft,the ultra-low orbit spacecraft and the micro-electro-mechanical systems(MEMS).Since the essence of this multiple-regime problem is a complex system composed by different scales and mechanics,the modeling and numerical prediction of these multiple-regime flows are very challenging at both theoretical and practical levels.Moreover,the single flow field with multiple flow regimes will make the problem extremly complicated.Unfortunately,this typical flow field is very common in hypersonic application and important for the development of multiple-regime aerodynamics.On the other hand,both the constructions of the low density wind tunnel with high enthalpy and the high altitude flight experiment are also very challenging at the present stage.Therefore,the researches on the multiple-regime flows and the corresponding complex science hit a worldwide bottleneck.This paper reviews the breakthroughs in the computational methods for multiple-regime flows in the last ten years,which can be used as numerical experimental tools for studying the multiple-scale flow mechanism and providing data for aerodynamic designs and thermal protections.This paper focuses on the progress of the unified wave-particle methods established in recent years,which are proved to be both accurate and efficient for multiple-regime flows with extremly high speed.