This work investigated multiple jet nozzles with various geometrical shape,number of exits,and material on reducing noise radiated from jet flows.Nozzles are categorized in two groups with few and many exit numbers,ea...This work investigated multiple jet nozzles with various geometrical shape,number of exits,and material on reducing noise radiated from jet flows.Nozzles are categorized in two groups with few and many exit numbers,each with various exit shapes,slot and circular,and geometry.Firstly,nozzles are designed and then fabricated by a 3D printer,Form Labs,Form2USA,with polymeric resin.Also,the nozzle with the most noise reduction made of stainless steel.Noise and air thrust were measured at three air pressure gauges,3,5,7 BAR and directions from nozzle apex,30°,90°,135°.Nozzles with slot exit shape made of both plastic and stainless steel revealed the most noise reduction among all nozzles with few exit numbers,nearly 11–14 dB(A)and 11.5–15 dB(A),respectively.On average,slotted nozzle noise reduction was nearly 5–6 dB(A)more than finned nozzle.However,nozzles with more exit numbers,finned and finned-central exit,illustrated much more noise reduction than nozzles with few exit numbers,by almost 16–18 dB(A),they represented similar sound.All tested nozzles and open pipe demonstrated equal air thrust at each pressure gauges.The nozzles with slotted exit shape,either plastic or stainless steel,can provide reasonable noise reduction in comparison to other configuration with few exit numbers.In contrast,nozzles with more exit numbers demonstrated the most noise reduction.展开更多
Jet force on the surface is typical for impinging jets towards the surface and it is very important in drying applications for force-sensitive surfaces. The designer should optimize the design parameters of industrial...Jet force on the surface is typical for impinging jets towards the surface and it is very important in drying applications for force-sensitive surfaces. The designer should optimize the design parameters of industrial drying equipment to achieve minimum pressure force between multiple jets and a moving curved surface. SST <em>k-ω</em> turbulence model is used to simulate a real geometry for industrial drying applications. The SST <em>k-ω</em> turbulence model succeeded with reasonable accuracy in reproducing the experimental results. The jet to surface distance, jet to jet spacing, jet inlet velocity, jet angle, and surface velocity are chosen as the design parameters. For the optimization of the impinging round jet, the pressure force coefficient on the moving curved surface is set as the objective function to be minimized. The SHERPA search algorithm is used to search for the optimal point from the weighted sum of all objectives method. One correlation is developed and validated for the pressure force coefficient. It is found that the pressure force coefficient is highly dependent on the nozzle to surface distance and jet angle but relatively insensitive to jet inlet velocity, jet to jet spacing, and surface velocity. The minimum pressure force coefficient correlates with a high value of nozzle to surface distance (tenfold diameter in this analysis) and a low value of the jet angle (40? in this analysis). The agreement in the prediction of the pressure force coefficient between the numerical simulation and developed correlation is found to be reasonable and all the data points deviate from the correlation approximately 8% on average.展开更多
This paper experimentally studied the effect of CO_(2) opposing multiple jets on the thermoacoustic instability and NO_(x) emissions in a lean-premixed model combustor.The feasibility was verified from three variables...This paper experimentally studied the effect of CO_(2) opposing multiple jets on the thermoacoustic instability and NO_(x) emissions in a lean-premixed model combustor.The feasibility was verified from three variables:the CO_(2) jet flow rate,hole numbers,and hole diameters of the nozzles.Results indicate that the control effect of thermoacoustic instability and NO_x emissions show a reverse trend with the increase of open area ratio on the whole,and the optimal jet flow rate range is 1-4 L/min with CO_(2) opposing multiple jets.In this flow rate range,the amplitude and frequency of the dynamic pressure and heat release signals CH~* basically decrease as the CO_(2) flow rate increases,which avoids high-frequency and high-amplitude thermoacoustic instability.The amplitude-damped ratio of dynamic pressure and CH*can reach as high as 98.75% and 93.64% with an optimal open area ratio of 3.72%.NO_(x) emissions also decrease as the jet flow rate increases,and the maximum suppression ratio can reach 68.14%.Besides,the flame shape changes from a steep inverted "V" to a more flat "M",and the flame length will become shorter with CO_(2) opposing multiple jets.This research achieved the synchronous control of thermoacoustic instability and NO_(x) emissions,which could be a design reference for constructing a safer and cleaner combustor.展开更多
The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosu...The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, tbr jet-tocrossflow velocity ratios of R = 4.2 ~ 16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories - suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the nund)er of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.展开更多
A hybrid model that combines both physical and numerical models was employed to simulate the velocity field in a river area in complex geometry with multiple plunging jets. The simulation was based on experiments conc...A hybrid model that combines both physical and numerical models was employed to simulate the velocity field in a river area in complex geometry with multiple plunging jets. The simulation was based on experiments concerning energy dissipation and scour prevention at the Xiluodu Hydropower Station on the Yangtze River. The calculated results indicate that the complex geometry of the river area has a significant influence on the velocity field, especially on the circulation flow pattern at upstream and downstream of the plunging area and on the asymmetric characteristics of the spiral flow near both banks. The scour characteristics of the downstream river bed caused by the multiple jets were also predicted and analyzed according to the characteristics of the calculated velocity field. The good agreement between the simulated and experimental results indicates that the hybrid model can be used to effectively solve complicated 3-D problems with complex geometric and inlet conditions. Such problems may not easily be solved by using either a physical or a numerical model alone, and therefore the method presented in this article is considered to be a practical and effective way of dealing with this kind of problems.展开更多
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element m...Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.展开更多
The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in...The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.展开更多
The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, includi...The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, including different jet arrangements and structures located in the stilling basin. It has been found that multiple jets can cause less scouring than single plunging jets. Based on this evidence, this study aimed to investigate the equilibrium morphology caused by multiple non-crossing jets. A dedicated laboratory model was built and experimental tests were carried out under different combinations of jet inclination angles, by varying the tailwater level and the virtual crossing point location, which was set below the original channel bed level. It was experimentally shown that the equilibrium scour morphology depends on the jet discharge, the differences in non-crossing jet inclination angles, the downstream water level, and the distance of the virtual crossing point from the original channel bed level. In particular, the last parameter was found to be one of the most influential parameters, because of the resulting flow patterns inside the water body. Furthermore, the analysis of experimental evidence allowed for a complete and detailed classification of the scour hole typologies. Three different scour typologies were distinguished and classified. Finally, based on previous studies, two novel re-lationships have been proposed to predict both the maximum scour depth and length within a large range of hydraulic and geometric parameters.展开更多
Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in ma...Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in mastering heat transfer coefficients. The heat transfer coefficients of high temperature steel plates cooled with multiple mist impinging jets were experimentally investigated, and the effects of gas and water flow rates on heat transfer coefficients were studied. The test results illustrate that the gas flow rate has little effect on the mist heat transfer rate. It is also found that the water flow rate has a great impact on the heat transfer coefficient. When the water flow rate ranges from 0.96m3/h to 1.59 m3/h, an increase in the rate will produce a higher heat transfer coefficient with a maximum of 5650 W/(m2 · K). Compared with the conventional gas jet cooling, the heat transfer coefficient of the mist jet cooling will be much higher, which can effectively strengthen the after-pot cooling.展开更多
The characteristics of single and multiple tandem jets(n=2,3,4) in crossflow have been investigated using the realizable k-ε model.The results of this model agree well with experimental measurements using PIV(Particl...The characteristics of single and multiple tandem jets(n=2,3,4) in crossflow have been investigated using the realizable k-ε model.The results of this model agree well with experimental measurements using PIV(Particle Image Velocimetry) or LIF(Laser Induced Fluorescence).We analyzed the calculated results and obtained detailed properties of velocity and concentration of the multiple jets in the pre-merging and post-merging regions.When the velocity ratio is identical,the bending degree of the leading jet is greater than that of the rear jets.The last jet penetrates deeper as the jet number increases,and the shielding effect of the front jet declines with jet spacing increase.Interaction of the jet and crossflow induces formation and development of a counter-rotating vortex pair(CVP).CVP makes the distribution of concentration appear kidney-shaped(except in the merging region),and maximum concentration is at the center of the counter-rotating vortex.Concentration at the CVP center is 1.03-1.4 times that of the local jet trajectory.Post-merging velocity and concentration characteristics differ from those of the single jet because of the shielding effect and mixing of all jets.This paper presents a unified formula of trajectory,concentration half-width and trajectory dilution,by introducing a reduction factor.展开更多
When an aircraft passes through a rainy area at high speed,the coating on the front edge of the fuselage will be continuously eroded by raindrops,causing the coating to wear,crack or even peel off.This paper uses carb...When an aircraft passes through a rainy area at high speed,the coating on the front edge of the fuselage will be continuously eroded by raindrops,causing the coating to wear,crack or even peel off.This paper uses carbon fiber T300 material as the base material,and at the different impact speeds and impact numbers,water cutting equipment was used to simulate the erosion of the coating caused by the continuous impact of water droplets.The damage morphology of samples at different damage stages was observed by digital microscope and Scanning Electron Microscope(SEM),and the damage evolution curve was established to analyze and reveal the damage behavior and damage mechanism of rain erosion.The results show that the degree of damage experienced an increasing trend with the increase of impact numbers and speed,until circular peel damage was formed;no damage occurred during the incubation period,and the curvature of the damage evolution curve increased significantly after the expansion period and eventually showed a stable expansion trend.The mechanical properties of the coating material were the main influencing factors of its rain corrosion resistance.Moreover,the axially symmetric unsteady contact problem of droplets impacting the surface of a solid deformable body was studied.And the contact area was determined based on the iterative algorithm boundary positioning method.A mathematical model and closed mathematical formula describing the unsteady interaction between a droplet and a solid deformable obstacle were proposed.展开更多
The hydrodynamics of a single jet and four tandem jets in a cross flow are simulated by using the Computational Fluid Dynamics (CFD) software Fluent. The realizable model is used to close the Reynolds-Averaged equat...The hydrodynamics of a single jet and four tandem jets in a cross flow are simulated by using the Computational Fluid Dynamics (CFD) software Fluent. The realizable model is used to close the Reynolds-Averaged equations. The flow characteristics of the jets, including the jet trajectory, the velocity field and the turbulent kinetic energy are obtained with various jet-to-cross flow velocity ratios in the range of 2.38-17.88. It is shown that a single jet penetrates slightly deeper than the first jet in a jet group at the same , although the difference decreases with the decrease of . It is also found that the way in which the velo-city decays along the centerline of the jet is similar for both a single jet and the first jet in a group, and the speed of the decay increases with the decrease of . The downstream jets in a group are found to behave differently due to the sheltering effect of the first jet in the group. Compared with the first jet, the downstream jets penetrate deeper into the cross flow, and the velocity decays more slowly. The circulation zone between the two upstream jets in the front is stronger than those formed between the downstream jets. The Turbulent Kinetic Energy (TKE) sees a distinct double-peak across the cross-sections close to each nozzle, with low values in the jet core and high values in the shear layers. The double-peak gradually vanishes, as the shear layers of the jet merge further away from the nozzle, where the TKE assumes peaks at the jet centerline.展开更多
The advantages of Reichardt's hypothesis in dealing with single and multiple circular jets in a stagnant environment are highlighted. The stages involved in the development of the point source method, an offshoot of ...The advantages of Reichardt's hypothesis in dealing with single and multiple circular jets in a stagnant environment are highlighted. The stages involved in the development of the point source method, an offshoot of the new hypothesis, are presented, Previous results of experiments on multiple circular jets in a stagnant environment justify the method of superposition. As a prelude to discussion of multiple jets in a co-flowing stream, results on the excess-velocity decay, the growth of the shear layer, and the dilutions for a single jet based on Reichardt's hypothesis are presented. The spreading hypothesis is generalized by introducing a link factor kl to account for the co-flowing stream. The distribution of excess-momentum flux uAu is shown to be Gaussian in nature. Based on the principle of superposition, the decay of the maximum excess velocity and the dilution are predicted for odd and even numbers of jets in an array. The predictions seem to be in good agreement with observed data.展开更多
文摘This work investigated multiple jet nozzles with various geometrical shape,number of exits,and material on reducing noise radiated from jet flows.Nozzles are categorized in two groups with few and many exit numbers,each with various exit shapes,slot and circular,and geometry.Firstly,nozzles are designed and then fabricated by a 3D printer,Form Labs,Form2USA,with polymeric resin.Also,the nozzle with the most noise reduction made of stainless steel.Noise and air thrust were measured at three air pressure gauges,3,5,7 BAR and directions from nozzle apex,30°,90°,135°.Nozzles with slot exit shape made of both plastic and stainless steel revealed the most noise reduction among all nozzles with few exit numbers,nearly 11–14 dB(A)and 11.5–15 dB(A),respectively.On average,slotted nozzle noise reduction was nearly 5–6 dB(A)more than finned nozzle.However,nozzles with more exit numbers,finned and finned-central exit,illustrated much more noise reduction than nozzles with few exit numbers,by almost 16–18 dB(A),they represented similar sound.All tested nozzles and open pipe demonstrated equal air thrust at each pressure gauges.The nozzles with slotted exit shape,either plastic or stainless steel,can provide reasonable noise reduction in comparison to other configuration with few exit numbers.In contrast,nozzles with more exit numbers demonstrated the most noise reduction.
文摘Jet force on the surface is typical for impinging jets towards the surface and it is very important in drying applications for force-sensitive surfaces. The designer should optimize the design parameters of industrial drying equipment to achieve minimum pressure force between multiple jets and a moving curved surface. SST <em>k-ω</em> turbulence model is used to simulate a real geometry for industrial drying applications. The SST <em>k-ω</em> turbulence model succeeded with reasonable accuracy in reproducing the experimental results. The jet to surface distance, jet to jet spacing, jet inlet velocity, jet angle, and surface velocity are chosen as the design parameters. For the optimization of the impinging round jet, the pressure force coefficient on the moving curved surface is set as the objective function to be minimized. The SHERPA search algorithm is used to search for the optimal point from the weighted sum of all objectives method. One correlation is developed and validated for the pressure force coefficient. It is found that the pressure force coefficient is highly dependent on the nozzle to surface distance and jet angle but relatively insensitive to jet inlet velocity, jet to jet spacing, and surface velocity. The minimum pressure force coefficient correlates with a high value of nozzle to surface distance (tenfold diameter in this analysis) and a low value of the jet angle (40? in this analysis). The agreement in the prediction of the pressure force coefficient between the numerical simulation and developed correlation is found to be reasonable and all the data points deviate from the correlation approximately 8% on average.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51825605)。
文摘This paper experimentally studied the effect of CO_(2) opposing multiple jets on the thermoacoustic instability and NO_(x) emissions in a lean-premixed model combustor.The feasibility was verified from three variables:the CO_(2) jet flow rate,hole numbers,and hole diameters of the nozzles.Results indicate that the control effect of thermoacoustic instability and NO_x emissions show a reverse trend with the increase of open area ratio on the whole,and the optimal jet flow rate range is 1-4 L/min with CO_(2) opposing multiple jets.In this flow rate range,the amplitude and frequency of the dynamic pressure and heat release signals CH~* basically decrease as the CO_(2) flow rate increases,which avoids high-frequency and high-amplitude thermoacoustic instability.The amplitude-damped ratio of dynamic pressure and CH*can reach as high as 98.75% and 93.64% with an optimal open area ratio of 3.72%.NO_(x) emissions also decrease as the jet flow rate increases,and the maximum suppression ratio can reach 68.14%.Besides,the flame shape changes from a steep inverted "V" to a more flat "M",and the flame length will become shorter with CO_(2) opposing multiple jets.This research achieved the synchronous control of thermoacoustic instability and NO_(x) emissions,which could be a design reference for constructing a safer and cleaner combustor.
基金The workis supported by a grant fromthe Hong Kong Research Grants Council (HKU7347/01E) Programfor NewCentury Excellent Talents in University (NCET-04-0494) the National Natural Science Foundation of China(Grant No.50479068)
文摘The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, tbr jet-tocrossflow velocity ratios of R = 4.2 ~ 16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories - suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the nund)er of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.
基金Project supported by the Trans-century Training Programme Foundation for the Talents by the State Ministry of Education of China and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry of China
文摘A hybrid model that combines both physical and numerical models was employed to simulate the velocity field in a river area in complex geometry with multiple plunging jets. The simulation was based on experiments concerning energy dissipation and scour prevention at the Xiluodu Hydropower Station on the Yangtze River. The calculated results indicate that the complex geometry of the river area has a significant influence on the velocity field, especially on the circulation flow pattern at upstream and downstream of the plunging area and on the asymmetric characteristics of the spiral flow near both banks. The scour characteristics of the downstream river bed caused by the multiple jets were also predicted and analyzed according to the characteristics of the calculated velocity field. The good agreement between the simulated and experimental results indicates that the hybrid model can be used to effectively solve complicated 3-D problems with complex geometric and inlet conditions. Such problems may not easily be solved by using either a physical or a numerical model alone, and therefore the method presented in this article is considered to be a practical and effective way of dealing with this kind of problems.
文摘Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.
基金supported by National Natural Science Foundation of China(Grant 11372139)
文摘The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.
文摘The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, including different jet arrangements and structures located in the stilling basin. It has been found that multiple jets can cause less scouring than single plunging jets. Based on this evidence, this study aimed to investigate the equilibrium morphology caused by multiple non-crossing jets. A dedicated laboratory model was built and experimental tests were carried out under different combinations of jet inclination angles, by varying the tailwater level and the virtual crossing point location, which was set below the original channel bed level. It was experimentally shown that the equilibrium scour morphology depends on the jet discharge, the differences in non-crossing jet inclination angles, the downstream water level, and the distance of the virtual crossing point from the original channel bed level. In particular, the last parameter was found to be one of the most influential parameters, because of the resulting flow patterns inside the water body. Furthermore, the analysis of experimental evidence allowed for a complete and detailed classification of the scour hole typologies. Three different scour typologies were distinguished and classified. Finally, based on previous studies, two novel re-lationships have been proposed to predict both the maximum scour depth and length within a large range of hydraulic and geometric parameters.
文摘Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in mastering heat transfer coefficients. The heat transfer coefficients of high temperature steel plates cooled with multiple mist impinging jets were experimentally investigated, and the effects of gas and water flow rates on heat transfer coefficients were studied. The test results illustrate that the gas flow rate has little effect on the mist heat transfer rate. It is also found that the water flow rate has a great impact on the heat transfer coefficient. When the water flow rate ranges from 0.96m3/h to 1.59 m3/h, an increase in the rate will produce a higher heat transfer coefficient with a maximum of 5650 W/(m2 · K). Compared with the conventional gas jet cooling, the heat transfer coefficient of the mist jet cooling will be much higher, which can effectively strengthen the after-pot cooling.
基金supported by the National Natural Science Foundation of China (Grant No. 11172218)academic award for excellent Ph.D.Candidates funded by the Ministry of Education of China
文摘The characteristics of single and multiple tandem jets(n=2,3,4) in crossflow have been investigated using the realizable k-ε model.The results of this model agree well with experimental measurements using PIV(Particle Image Velocimetry) or LIF(Laser Induced Fluorescence).We analyzed the calculated results and obtained detailed properties of velocity and concentration of the multiple jets in the pre-merging and post-merging regions.When the velocity ratio is identical,the bending degree of the leading jet is greater than that of the rear jets.The last jet penetrates deeper as the jet number increases,and the shielding effect of the front jet declines with jet spacing increase.Interaction of the jet and crossflow induces formation and development of a counter-rotating vortex pair(CVP).CVP makes the distribution of concentration appear kidney-shaped(except in the merging region),and maximum concentration is at the center of the counter-rotating vortex.Concentration at the CVP center is 1.03-1.4 times that of the local jet trajectory.Post-merging velocity and concentration characteristics differ from those of the single jet because of the shielding effect and mixing of all jets.This paper presents a unified formula of trajectory,concentration half-width and trajectory dilution,by introducing a reduction factor.
基金Supported by the National Natural Science Foundation of China(Nos.12261131505,62005172)the Russian Science Fund(No.23-49-00133)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210517)the Basic Research Programs of Taicang,China(No.TC2021JC21).
文摘When an aircraft passes through a rainy area at high speed,the coating on the front edge of the fuselage will be continuously eroded by raindrops,causing the coating to wear,crack or even peel off.This paper uses carbon fiber T300 material as the base material,and at the different impact speeds and impact numbers,water cutting equipment was used to simulate the erosion of the coating caused by the continuous impact of water droplets.The damage morphology of samples at different damage stages was observed by digital microscope and Scanning Electron Microscope(SEM),and the damage evolution curve was established to analyze and reveal the damage behavior and damage mechanism of rain erosion.The results show that the degree of damage experienced an increasing trend with the increase of impact numbers and speed,until circular peel damage was formed;no damage occurred during the incubation period,and the curvature of the damage evolution curve increased significantly after the expansion period and eventually showed a stable expansion trend.The mechanical properties of the coating material were the main influencing factors of its rain corrosion resistance.Moreover,the axially symmetric unsteady contact problem of droplets impacting the surface of a solid deformable body was studied.And the contact area was determined based on the iterative algorithm boundary positioning method.A mathematical model and closed mathematical formula describing the unsteady interaction between a droplet and a solid deformable obstacle were proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50879020, 51179055 and 51125034)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2010585512)the Fundamental Research Funds for the Central Universities (Grant No. 2009B07614)
文摘The hydrodynamics of a single jet and four tandem jets in a cross flow are simulated by using the Computational Fluid Dynamics (CFD) software Fluent. The realizable model is used to close the Reynolds-Averaged equations. The flow characteristics of the jets, including the jet trajectory, the velocity field and the turbulent kinetic energy are obtained with various jet-to-cross flow velocity ratios in the range of 2.38-17.88. It is shown that a single jet penetrates slightly deeper than the first jet in a jet group at the same , although the difference decreases with the decrease of . It is also found that the way in which the velo-city decays along the centerline of the jet is similar for both a single jet and the first jet in a group, and the speed of the decay increases with the decrease of . The downstream jets in a group are found to behave differently due to the sheltering effect of the first jet in the group. Compared with the first jet, the downstream jets penetrate deeper into the cross flow, and the velocity decays more slowly. The circulation zone between the two upstream jets in the front is stronger than those formed between the downstream jets. The Turbulent Kinetic Energy (TKE) sees a distinct double-peak across the cross-sections close to each nozzle, with low values in the jet core and high values in the shear layers. The double-peak gradually vanishes, as the shear layers of the jet merge further away from the nozzle, where the TKE assumes peaks at the jet centerline.
文摘The advantages of Reichardt's hypothesis in dealing with single and multiple circular jets in a stagnant environment are highlighted. The stages involved in the development of the point source method, an offshoot of the new hypothesis, are presented, Previous results of experiments on multiple circular jets in a stagnant environment justify the method of superposition. As a prelude to discussion of multiple jets in a co-flowing stream, results on the excess-velocity decay, the growth of the shear layer, and the dilutions for a single jet based on Reichardt's hypothesis are presented. The spreading hypothesis is generalized by introducing a link factor kl to account for the co-flowing stream. The distribution of excess-momentum flux uAu is shown to be Gaussian in nature. Based on the principle of superposition, the decay of the maximum excess velocity and the dilution are predicted for odd and even numbers of jets in an array. The predictions seem to be in good agreement with observed data.