期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A hierarchical clustering of features approach for vehicle tracking in traffic environments 被引量:1
1
作者 Anan Banharnsakun Supannee Tanathong 《International Journal of Intelligent Computing and Cybernetics》 EI 2016年第4期354-368,共15页
Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential... Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential and challenging task.In the previous studies,many vehicle detection methods have been presented.These proposed approaches mostly used either motion information or characteristic information to detect vehicles.Although these methods are effective in detecting vehicles,their detection accuracy still needs to be improved.Moreover,the headlights and windshields,which are used as the vehicle features for detection in these methods,are easily obscured in some traffic conditions.The paper aims to discuss these issues.Design/methodology/approach-First,each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model.Next,the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks.These feature blocks will be used to track the moving objects frame by frame.Findings-Using the proposed method,it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement(waving trees),which has to be deemed as background.In addition,the proposed method is able to deal with different vehicle shapes such as cars,vans,and motorcycles.Originality/value-This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions. 展开更多
关键词 Feature extraction Hierarchical clustering Mixture-of-Gaussians multiple object detection Shi-Tomasi corner detection Vehicle tracking Background model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部