期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimum Preparation Conditions of LiNi_(0.8)Co_(0.2)O_2 and LiNi_(0.95)Ce_(0.05)O_2 as Lithium-Ion Battery Cathode Materials 被引量:1
1
作者 豆志河 张廷安 侯闯 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期644-648,共5页
The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The... The preparation of LiNi_(0.8)Co_(0.2)O_2 was discussed by the multiply sintering method for solid reaction, in which the sintered material was smashed, ground and pelletted between two successive sintering steps. The optimum technological condition was obtained through orthogonal experiments by L_9(3~4) and DTA analysis. The result indicates that the factors of effecting the electrochemical properties of synthesized LiNi_(0.8)Co_(0.2)O_2 are molar ratio of Li/Ni/Co, oxygen pressure, homothermal time, the final sintering temperature in turn according to its importance. The oxygen pressure is reviewed independently and the technological condition is further optimized. With the same method, rare earth element Ce was studied as substitute element of Co and the cathode material of LiNi_(0.95)Ce_(0.05)O_2 with excellent electrochemical properties was prepared. The electrochemical testing results of LiNi_(0.8)Co_(0.2)O_2 and LiNi_(0.95)Ce_(0.05)O_2 experimental batteries show that discharge capacities of them reach 165 and 148 mAh·g^(-1) respectively and the persistence is more than 9 h at 3.7 V. 展开更多
关键词 energy material lithium-ion battery cathode materials LiNi_(0.8)Co_(0.2)O_2 LiNi_(0.95)Ce_(0.05)O_2 multiple sinter method rare earths
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部