This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is p...This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control scheme is derived by using the estimates of the leader spacecraft’s states and the adding a power integrator technique. When considering actuator saturation, an auxiliary system is utilized to compensate the saturation. Further, a rigorous theoretical proof is provided to show that the practical fixed-time stability of the closed-loop system is ensured. Finally, simulation results illustrate the benefits and effectiveness of the developed control scheme.展开更多
The attitude synchronization problem for multiple spacecraft with input constraints is investigated in this paper. Two distributed control laws are presented and analyzed. First, by intro- ducing bounded function, a d...The attitude synchronization problem for multiple spacecraft with input constraints is investigated in this paper. Two distributed control laws are presented and analyzed. First, by intro- ducing bounded function, a distributed asymptotically stable control law is proposed. Such a con- trol scheme can guarantee attitude synchronization and the control inputs of each spacecraft can be a priori bounded regardless of the number of its neighbors. Then, based on graph theory, homoge- neous method, and Lyapunov stability theory, a distributed finite-time control law is designed. Rig- orous proof shows that attitude synchronization of multiple spacecraft can be achieved in finite time, and the control scheme satisfies input saturation requirement. Finally, numerical simulations are presented to demonstrate the effectiveness and feasibility of the oroDosed schemes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61720106010,62003041)Science and Technology on Space Intelligent Control Laboratory,China(No.KGJZDSYS-2018-05)General Project of Ningxia Natural Science Fund,China(No.2020AAC03234)。
文摘This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control scheme is derived by using the estimates of the leader spacecraft’s states and the adding a power integrator technique. When considering actuator saturation, an auxiliary system is utilized to compensate the saturation. Further, a rigorous theoretical proof is provided to show that the practical fixed-time stability of the closed-loop system is ensured. Finally, simulation results illustrate the benefits and effectiveness of the developed control scheme.
基金supported by the Natural Science Foundation of Heilongjiang Province (No. F201326)
文摘The attitude synchronization problem for multiple spacecraft with input constraints is investigated in this paper. Two distributed control laws are presented and analyzed. First, by intro- ducing bounded function, a distributed asymptotically stable control law is proposed. Such a con- trol scheme can guarantee attitude synchronization and the control inputs of each spacecraft can be a priori bounded regardless of the number of its neighbors. Then, based on graph theory, homoge- neous method, and Lyapunov stability theory, a distributed finite-time control law is designed. Rig- orous proof shows that attitude synchronization of multiple spacecraft can be achieved in finite time, and the control scheme satisfies input saturation requirement. Finally, numerical simulations are presented to demonstrate the effectiveness and feasibility of the oroDosed schemes.